ubuntu20.04+cuda11.8+cudnn8.9.6+pytorch2.4.1 + tensorflow2.12安装记录

本机环境

rtx4090
ubuntu20.04+cuda11.8+cudnn8.9.6安装记录

一:nvidia driver 安装

1.1 输入显卡型号查看支持显卡驱动的版本

进入英伟达中国驱动官网搜索支持的驱动版本
搜索支持的驱动在这里插入图片描述

1.2下载驱动并安装

方法一:直接在Ubuntu系统中的soft updates中安装535-server(专有)版本
在这里插入图片描述其他方法参考:因为可以直接使用方法一,避免麻烦就没测试其他方式,可自行参考
在ubuntu安装nvidia驱动 (亲测有效,这是方法二)
在ubuntu安装nvidia驱动(亲测有效,这是方法一))

二cuda11.8安装

安装过程中参考资料

1: Ubuntu 20.04 RTX 4090显卡 深度学习环境配置(Nvidia显卡驱动、CUDA11.6.0、cuDNN8.5)
2:揭秘Ubuntu深度学习服务器配置:新手如何成为专家?

2.1 安装cuda前的版本确定准备工作

进入官网
选择要安装的型号
【CUDA】Tensorflow、CUDA、cuDNN、python版本对应关系一览表(全)【win、macOS、linux】
这里是选择兼容pytorch和tensorflow的cudn版本,看个人需求

pytorch 应该是只要求cuda版本,对cudnn版本没有具体要求,而tensorflow对cuda cudnn版本都有要求
在这里插入图片描述pytorch cuda 版本对应参考资料感觉没有最新版本的对应关系,从官网可以看出支持关系:当前为最新支持版本所以选择11.8
此外还要注意当前安装的nvidia driver版本最高支持的cuda版本,采用方式1系统便捷的方式安装的不是最新的驱动,不会支持最新的cuda版本,查询方式如下,输入命令
nvidia-smi
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.2安装CUDA11.8.0

wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/

#运行run文件(–override:表示覆盖替换文件意思)
sudo sh cuda_11.8.0_520.61.05_linux.run --override

忘记录安装过程,参考如下

在这里插入图片描述

配置相关环境变量。

(1)打开~/.bashrc文件,代码如下:

sudo vim ~/.bashrc

#利用vim命令打开~/.bashrc将以下内容写入到尾部,并保存成功。

CUDA_HOME=/usr/local/cuda 
PATH=$PATH:$CUDA_HOME/bin 
LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

#保存,退出。终端执行
source ~/.bashrc

如下可根据意愿进行,不确定是否必须。

#利用vim命令打开在/etc/profile文件中,添加CUDA环境变量
sudo vim /etc/profile

#打开文档都在文档结尾加上下面两句:

PATH=/usr/local/cuda/bin:$PATH  
export PATH

#保存后, 执行下列命令, 使环境变量立即生效,代码如下:

source /etc/profile

三:安装cudnn

下载网址注意对应关系,别下挫啦

在这里插入图片描述

3.1 安装cudnn for ubunut20.04

#切换到下载路径
cd ~/Downloads
#解压
tar -xvf cudnn-linux-x86_64-8.5.0.96_cuda11-archive.tar.xz

#成功提取文件后不用管它,直接执行下面命令(不用修改,没有版本号之类)

sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include 
sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64 
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

# 验证安装

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述最后有个 /* cannot use constexpr here since this is a C-only file */ 不知道为啥好像没有影响,正常应该如下图吧
在这里插入图片描述

另一种安装方式for ubunut22.04

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四:查看安装成功

nvcc --version

在这里插入图片描述

五:卸载

ubuntu纯净卸载CUDA+cudnn【全网最全】

#卸载方法1
cd  /usr/local/cuda-11.4/bin
sudo ./cuda-uninstaller

#方法2 纯净删除 运行就好了

sudo apt-get remove cuda
sudo apt autoremove 
sudo apt-get remove cuda*
 cd /usr/local/
sudo rm -r cuda-11.4
sudo dpkg -l |grep cuda
sudo dpkg -P cuda-visual-tools-11-4 
sudo dpkg -P 残留文件名

六 pytorch安装



pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118


七:tensorflow2.12.0安装

参考资料 Ubuntu21.10下安装TensorFlow及配置GPU支持(cuda11.1+cudnn8.1.0)

7.1 本文选择配置如下

在这里插入图片描述

7.2安装依赖包(区别于window系统,win中不需要安装此项依赖)

安装 TensorFlow 之前需要我们安装两个个依赖包,这里我的 cuda 版本为 11.8,cudnn 版本为 8.6.0,下载依赖包为

libcudnn8_8.6.0.163-1+cuda11.8_amd64.deb
libcudnn8-dev_8.6.0.163-1+cuda11.8_amd64.deb
官网链接
在这里插入图片描述

下载与安装
#使用 wget 下载:
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/libcudnn8_8.6.0.163-1+cuda11.8_amd64.deb
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/libcudnn8-dev_8.6.0.163-1+cuda11.8_amd64.deb
#安装命令如下:

sudo dpkg -i libcudnn8_8.1.0.77-1+cuda11.2_amd64.deb
sudo dpkg -i libcudnn8-dev_8.1.0.77-1+cuda11.2_amd64.deb

测试安装成功

打开python 运行如下命令

import tensorflow as tf
print(tf.__version__)

在这里插入图片描述

遇到的问题

解决方法
https://stackoverflow.com/questions/75728844/typeerror-variablemetaclass-variable-v1-call-got-an-unexpected-keyword-argum

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值