本机环境
rtx4090
ubuntu20.04+cuda11.8+cudnn8.9.6安装记录
一:nvidia driver 安装
1.1 输入显卡型号查看支持显卡驱动的版本
进入英伟达中国驱动官网搜索支持的驱动版本
1.2下载驱动并安装
方法一:直接在Ubuntu系统中的soft updates中安装535-server(专有)版本
其他方法参考:因为可以直接使用方法一,避免麻烦就没测试其他方式,可自行参考
在ubuntu安装nvidia驱动 (亲测有效,这是方法二)
在ubuntu安装nvidia驱动(亲测有效,这是方法一))
二cuda11.8安装
安装过程中参考资料
1: Ubuntu 20.04 RTX 4090显卡 深度学习环境配置(Nvidia显卡驱动、CUDA11.6.0、cuDNN8.5)
2:揭秘Ubuntu深度学习服务器配置:新手如何成为专家?
2.1 安装cuda前的版本确定准备工作
进入官网
选择要安装的型号
【CUDA】Tensorflow、CUDA、cuDNN、python版本对应关系一览表(全)【win、macOS、linux】
这里是选择兼容pytorch和tensorflow的cudn版本,看个人需求
pytorch 应该是只要求cuda版本,对cudnn版本没有具体要求,而tensorflow对cuda cudnn版本都有要求
pytorch cuda 版本对应参考资料感觉没有最新版本的对应关系,从官网可以看出支持关系:当前为最新支持版本所以选择11.8
此外还要注意当前安装的nvidia driver版本最高支持的cuda版本,采用方式1系统便捷的方式安装的不是最新的驱动,不会支持最新的cuda版本,查询方式如下,输入命令
nvidia-smi
2.2安装CUDA11.8.0
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/
#运行run文件(–override:表示覆盖替换文件意思)
sudo sh cuda_11.8.0_520.61.05_linux.run --override
忘记录安装过程,参考如下
配置相关环境变量。
(1)打开~/.bashrc文件,代码如下:
sudo vim ~/.bashrc
#利用vim命令打开~/.bashrc将以下内容写入到尾部,并保存成功。
CUDA_HOME=/usr/local/cuda
PATH=$PATH:$CUDA_HOME/bin
LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
#保存,退出。终端执行
source ~/.bashrc
如下可根据意愿进行,不确定是否必须。
#利用vim命令打开在/etc/profile文件中,添加CUDA环境变量
sudo vim /etc/profile
#打开文档都在文档结尾加上下面两句:
PATH=/usr/local/cuda/bin:$PATH
export PATH
#保存后, 执行下列命令, 使环境变量立即生效,代码如下:
source /etc/profile
三:安装cudnn
下载网址注意对应关系,别下挫啦
3.1 安装cudnn for ubunut20.04
#切换到下载路径
cd ~/Downloads
#解压
tar -xvf cudnn-linux-x86_64-8.5.0.96_cuda11-archive.tar.xz
#成功提取文件后不用管它,直接执行下面命令(不用修改,没有版本号之类)
sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include
sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
# 验证安装
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
最后有个 /* cannot use constexpr here since this is a C-only file */ 不知道为啥好像没有影响,正常应该如下图吧
另一种安装方式for ubunut22.04
四:查看安装成功
nvcc --version
五:卸载
#卸载方法1
cd /usr/local/cuda-11.4/bin
sudo ./cuda-uninstaller
#方法2 纯净删除 运行就好了
sudo apt-get remove cuda
sudo apt autoremove
sudo apt-get remove cuda*
cd /usr/local/
sudo rm -r cuda-11.4
sudo dpkg -l |grep cuda
sudo dpkg -P cuda-visual-tools-11-4
sudo dpkg -P 残留文件名
六 pytorch安装
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
七:tensorflow2.12.0安装
参考资料 Ubuntu21.10下安装TensorFlow及配置GPU支持(cuda11.1+cudnn8.1.0)
7.1 本文选择配置如下
7.2安装依赖包(区别于window系统,win中不需要安装此项依赖)
安装 TensorFlow 之前需要我们安装两个个依赖包,这里我的 cuda 版本为 11.8,cudnn 版本为 8.6.0,下载依赖包为
libcudnn8_8.6.0.163-1+cuda11.8_amd64.deb
libcudnn8-dev_8.6.0.163-1+cuda11.8_amd64.deb
官网链接
下载与安装
#使用 wget 下载:
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/libcudnn8_8.6.0.163-1+cuda11.8_amd64.deb
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/libcudnn8-dev_8.6.0.163-1+cuda11.8_amd64.deb
#安装命令如下:
sudo dpkg -i libcudnn8_8.1.0.77-1+cuda11.2_amd64.deb
sudo dpkg -i libcudnn8-dev_8.1.0.77-1+cuda11.2_amd64.deb
测试安装成功
打开python 运行如下命令
import tensorflow as tf
print(tf.__version__)
遇到的问题
解决方法
https://stackoverflow.com/questions/75728844/typeerror-variablemetaclass-variable-v1-call-got-an-unexpected-keyword-argum