ubuntu20.04安装cuda11.8 + cuDNNv8.9.0 (July 11th, 2023), forCUDA 11.x+TensorRT-8.6.1+protobuf-3.194

根据文档:https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-861/install-guide/index.html

TensorRT 8.6.1 支持:cuda11.8, cuDNN v8.9.0

1. 安装 cuda11.8

nvidia-smi

image

可以看到显示CUDA Version为 12.2,说明该显卡最高支持到 12.2, 我们安装 11.8

参考:https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=runfile_local

cd /home/h/programs
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run

image

直接继续,因为我们已经装过 nvidia 显卡 驱动了。

image

image

我们保留了 Demo

!!! 我的根目录 / 分小了,空间不足。。。

# 删除 cuda-11.8
cd /usr/local
sudo rm -r cuda-11.8
# 删除软链接
unlink cuda

安装 cuda 到 指定目录,如:/home/h/programs

参考:https://blog.csdn.net/kxqt233/article/details/113825524

sudo sh cuda_11.8.0_520.61.05_linux.run --help
sudo sh cuda_11.8.0_520.61.05_linux.run --toolkitpath=/home/h/programs/cuda-11.8 --toolkit --silent

安装完成后,/usr/local 下的 cuda 软链接指向:/home/h/programs/cuda-11.8

sudo vim ~/.bashrc  # 配置系统环境:打开系统环境配置文件

# 将cuda的头文件和库文件路径加入系统环境,因为有软链接,我们直接使用 /usr/local/cuda
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}} 
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

source ~/.bashrc # 更新配置

nvcc -V  # 检查安装是否成功
cat /usr/local/cuda/version.json

我使用的是 zsh,遇到以下问题:https://blog.csdn.net/qq_36148847/article/details/79261067

解决:修改 ~/.zshrc,source ~/.zshrc 即可。

image

2. 安装 cuDNN v8.9.0 (July 11th, 2023), for CUDA 11.x

参考:https://developer.nvidia.com/rdp/cudnn-archive

https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

cd /home/h/programs
# 手动下载 Local Installer for Linux x86_64 (Tar)
# https://developer.nvidia.com/downloads/compute/cudnn/secure/8.9.0/local_installers/11.8/cudnn-linux-x86_64-8.9.0.131_cuda11-archive.tar.xz/
tar -xvf  cudnn-linux-x86_64-8.9.0.131_cuda11-archive.tar.xz 

# Copy the following files into the CUDA toolkit directory.
sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include 
sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64 
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

# 查看 cudnn 版本
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2 

#define CUDNN_MAJOR 8
#define CUDNN_MINOR 9
#define CUDNN_PATCHLEVEL 0

#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
/* cannot use constexpr here since this is a C-only file */

3. 安装 TensorRT 8.6 GA

EA 版本代表抢先体验(在正式发布之前)。
GA 代表通用性。 表示稳定版,经过全面测试。

参考:https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar

# 下载 https://developer.nvidia.com/nvidia-tensorrt-8x-download

TensorRT 8.6 GA for Linux x86_64 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7 and 11.8 TAR Package

# 手动下载
tar -xzvf  TensorRT-8.6.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz 
vim ~/.zshrc

# tensorrt-8.6.1.6
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/h/programs/TensorRT-8.6.1.6/lib

export PATH=/home/h/programs/TensorRT-8.6.1.6/bin:$PATH # 保证 trtexec 可用

source ~/.zshrc

验证安装:

cd /home/h/programs/TensorRT-8.6.1.6/samples/sampleOnnxMNIST
# 编译
make
# 运行
cd /home/h/programs/TensorRT-8.6.1.6/bin
./sample_onnx_mnist
drawing

预测为 8,正确!

4. 安装 protobuf-3.19.4

参考:https://github.com/protocolbuffers/protobuf/blob/v3.19.4/src/README.md

sudo apt-get install autoconf automake libtool curl make g++ unzip
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.19.4/protobuf-all-3.19.4.tar.gz --no-check-certificate
tar zxvf protobuf-all-3.19.4.tar.gz
cd protobuf-3.19.4
./autogen.sh
./configure --prefix=/home/h/programs/protobuf # 安装到的路径,否则默认安装到 /usr/local/
make -j 8
make check
sudo make install
sudo ldconfig # refresh shared library cache.

添加环境变量:

vim ~/.zshrc

加入以下内容:

####### add protobuf lib path ########
#(动态库搜索路径) 程序加载运行期间查找动态链接库时指定除了系统默认路径之外的
	其他路径
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/h/programs/protobuf/lib/
#(静态库搜索路径) 程序编译期间查找动态链接库时指定查找共享库的路径
export LIBRARY_PATH=$LIBRARY_PATH:/home/h/programs/protobuf/lib/
#执行程序搜索路径
export PATH=$PATH:/home/h/programs/protobuf/bin/
#c程序头文件搜索路径
export C_INCLUDE_PATH=$C_INCLUDE_PATH:/home/h/programs/protobuf/include/
#c++程序头文件搜索路径
export CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/home/h/programs/protobuf/incl    ude/
#pkg-config 路径
export PKG_CONFIG_PATH=/home/h/programs/protobuf/lib/pkgconfig/
######################################

激活环境变量:

source ~/.zshrc

查看版本:

protoc --version
# libprotoc 3.19.4
<think>好的,我现在要帮用户在Ubuntu 20.04安装CUDA 11.8并配置PyTorch环境。首先,我需要确认用户的需求是什么。用户提到他们想安装CUDA 11.8来支持PyTorch,所以主要步骤应该是安装CUDA 11.8,然后安装对应的PyTorch版本。 接下来,我得回忆一下CUDA安装流程。根据提供的引用,特别是引用[3]和引用[2],安装CUDA可以通过下载.run文件或者使用deb包。用户提供的引用中有两种方法,一种是直接下载.run文件,另一种是通过添加仓库安装。但引用[3]中的链接是CUDA 11.8.run文件,而引用[2]里是CUDA 12.1的deb安装方法,但用户需要的是11.8,所以应该参考引用[3]的方法。 不过,我需要检查用户提供的引用是否有正确的CUDA 11.8安装方式。引用[3]给出了下载cuda_11.8.0_520.61.05_linux.run的命令,然后运行安装。而引用[2]虽然主要讲CUDA 12.1,但步骤可能类似,只是URL不同。但用户需要的是11.8,所以应该使用引用[3]中的wget命令获取安装文件。 安装CUDA之前,需要确保系统已经安装了合适的NVIDIA驱动。CUDA安装包通常包含驱动,但有时用户可能已经安装了驱动,这时候在安装CUDA时可能需要不选择安装驱动。但根据引用[2]中的步骤,他们直接安装CUDA,可能包含了驱动。不过需要注意,如果用户已经安装了其他版本的驱动,可能会有冲突。所以可能需要先卸载旧驱动,或者确保驱动版本兼容。 接下来,安装CUDA后,需要配置环境变量,将CUDA的路径添加到PATH和LD_LIBRARY_PATH中。通常,安装程序会提示是否自动添加,但用户可能需要手动添加,比如在.bashrc文件中加入export PATH=/usr/local/cuda-11.8/bin:$PATH和export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH。 然后,安装cuDNN,但用户的问题中没有提到cuDNN,不过PyTorch可能依赖cuDNN,所以可能需要安装。根据引用[4],用户提到安装cudnn和pytorch,但具体步骤可能需要用户从NVIDIA官网下载cuDNN,解压并复制到CUDA目录中,或者通过apt安装。不过根据常见的做法,可能需要手动下载cuDNN的tar包,然后复制到CUDA安装目录,这需要用户有NVIDIA的开发者账号,或者使用其他途径安装。 不过,可能PyTorch的安装已经包含了所需的库,或者通过conda安装时自动处理依赖,比如使用cudatoolkit=11.8。因此,可能不需要单独安装cuDNN,但需要确认PyTorch版本是否与CUDA 11.8兼容,并且是否在安装命令中正确指定。 然后,安装PyTorch。根据引用[1],用户提供的安装命令是conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia。但需要确认PyTorch 2.0.0是否支持CUDA 11.8。通常,PyTorch的官方文档会列出支持的CUDA版本,但用户提供的命令中明确指定了pytorch-cuda=11.8,所以应该没问题。不过,可能需要检查该版本是否存在,以及conda源是否可用。 另外,引用[4]中的用户安装CUDA 11.3,然后使用conda install命令指定cudatoolkit=11.3。因此,对于CUDA 11.8,应该对应地使用cudatoolkit=11.8。但需要看PyTorch的版本是否支持。例如,PyTorch 2.0.0可能支持CUDA 11.7或11.8,但需要确认。 可能需要查看PyTorch官方安装指南,确认对应版本的命令。例如,在PyTorch官网,用户可以选择CUDA 11.8,然后生成对应安装命令。假设用户提供的引用[1]中的命令是正确的,那么按照该命令安装即可。 总结步骤: 1. 安装NVIDIA驱动(如果尚未安装,可能CUDA安装包会包含驱动,但可能需要禁用nouveau驱动,并处理冲突)。 2. 下载CUDA 11.8.run文件(引用[3])。 3. 运行安装程序,选择不安装驱动(如果已安装驱动),否则允许安装驱动。 4. 配置环境变量。 5. 验证CUDA安装(使用nvcc --version或nvidia-smi)。 6. 安装PyTorch,使用conda命令指定CUDA 11.8(引用[1])。 7. 验证PyTorch是否能识别CUDA。 可能的注意事项: - 系统是否有兼容的GPU?用户提到的是4060 Ti,根据NVIDIA的文档,4060 Ti应支持CUDA 11.8- 是否安装了正确的GCC版本CUDA 11.8可能需要特定版本的GCC,Ubuntu 20.04默认的GCC是9.4.0,而CUDA 11.8可能要求GCC版本不超过某个值,需要确认兼容性。 - 如果用户之前安装了其他CUDA版本,可能需要处理多版本共存的问题,通过软链接或环境变量切换。 现在,我需要将这些步骤整理成用户友好的指导,确保每一步清晰,并引用正确的参考链接。例如,下载CUDA 11.8使用引用[3]中的命令,安装PyTorch使用引用[1]中的命令。同时,提醒用户检查驱动和依赖项。</think>### 在 Ubuntu 20.04安装 CUDA 11.8 并配置 PyTorch 环境 #### 步骤 1安装 NVIDIA 驱动(可选) 如果尚未安装驱动,CUDA 安装包可能包含默认驱动。若需手动安装驱动,可执行: ```bash sudo ubuntu-drivers autoinstall ``` 重启后验证驱动: ```bash nvidia-smi # 输出应包含 GPU 信息 ``` #### 步骤 2:下载 CUDA 11.8 安装包 使用官方提供的 `.run` 文件安装(引用[3]): ```bash wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run ``` #### 步骤 3安装 CUDA 11.8 运行安装脚本并按提示操作: ```bash sudo sh cuda_11.8.0_520.61.05_linux.run ``` - **注意**:若已安装驱动,取消勾选驱动安装选项;否则允许安装- 默认安装路径为 `/usr/local/cuda-11.8`。 #### 步骤 4:配置环境变量 将以下内容添加到 `~/.bashrc`: ```bash export PATH=/usr/local/cuda-11.8/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH ``` 加载配置: ```bash source ~/.bashrc ``` 验证安装: ```bash nvcc --version # 应显示 CUDA 11.8 ``` #### 步骤 5:安装 PyTorch 2.0.0CUDA 11.8 使用 Conda 安装指定版本(引用[1]): ```bash conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia ``` #### 步骤 6:验证 PyTorch 环境 启动 Python 并检查 CUDA 支持: ```python import torch print(torch.__version__) # 应输出 2.0.0 print(torch.cuda.is_available()) # 应输出 True print(torch.version.cuda) # 应显示 11.8 ``` #### 注意事项 1. **驱动兼容性**:确保 NVIDIA 驱动版本 ≥ 520.61.05(与 CUDA 11.8 兼容)[^3]。 2. **多 CUDA 版本共存**:通过修改环境变量切换版本3. **cuDNN 支持**:PyTorch 通常已集成 cuDNN,无需单独安装[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理心炼丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值