原文链接: 三维空间中圆的参数方程
三维空间中,以点为圆心、以向量
为法向量、半径为 r 的圆(见下图),
它的参数方程为:
其中,与
分别对应单位向量
与
,它们既垂直于
,又互相垂直;随着
从0变化到
,通过参数方程可以得到圆上每一个点的坐标。与
是满足既垂直于
,又互相垂直的任意单位向量。怎么样快速得到满足条件的
与
呢?这时候应该充分利用叉乘运算的特点,因为两个向量的叉乘结果只要不为零,叉乘结果总是垂直于原来的这两个向量。具体如下:
求的方法:
叉乘坐标向量
。如果叉乘结果不为零,那么它必然垂直于
,把它单位化后就得到
;如果叉乘结果恰好为零,再用
叉乘剩下两个坐标向量
与
中任意一个,单位化叉乘结果,得到
。
求的方法:
叉乘上一步得到的
,叉乘结果必然垂直于
与
,单位化叉乘结果,就得到
。
接下来,利用Matlab软件对三维空间中圆的参数方程进行测试。代码如下:
n=[1 1 1]; %法向量n
r=1; %圆的半径为1
c=[1 1 1]; %圆心的坐标
theta=(0:2*pi/100:2*pi)'; %theta角从0到2*pi
a=cross(n,[1 0 0]); %n与i叉乘,求取a向量
if ~any(a) %如果a为零向量,将n与j叉乘
a=cross(n,[0 1 0]);
end
b=cross(n,a); %求取b向量
a=a/norm(a); %单位化a向量
b=b/norm(b); %单位化b向量
c1=c(1)*ones(size(theta,1),1);
c2=c(2)*ones(size(theta,1),1);
c3=c(3)*ones(size(theta,1),1);
x=c1+r*a(1)*cos(theta)+r*b(1)*sin(theta);%圆上各点的x坐标
y=c2+r*a(2)*cos(theta)+r*b(2)*sin(theta);%圆上各点的y坐标
z=c3+r*a(3)*cos(theta)+r*b(3)*sin(theta);%圆上各点的z坐标
plot3(x,y,z)
xlabel('x轴')
ylabel('y轴')
zlabel('z轴')
Matlab运行结果如下图: