
图像质量评估指标(Image Quality Assessment,IQA)
文章平均质量分 91
图像质量评估是数字图像处理的基础门类,是图像处理目标的评价体系。图像质量评估手段不但在传统的基于特征的图像处理上举足轻重,还在基于深度学习的图像处理上扮演重要角色,有大量的模型网络训练需要借助IQA的思想构建损失函数;因此有必要结合工作与学习中的一些经验来谈一谈我对IQA的认识
xiaoxifei
这个作者很懒,什么都没留下…
展开
-
图像质量评估指标(6)自然图像质量评估NIQE (付代码链接)
一种新的无参考图像质量指标 NIQEmaking a completely blind image quality analyzer介绍新的模型称之为NIQE(Natural Image Quality Evaluator),这个模型的设计思路是基于构建一系列的用于衡量图像质量的特征,并且将这些特征用于拟合一个多元的高斯模型,这些特征是从一些简单并且高度规则的自然景观中提取;这个模型实际上是...原创 2019-12-23 15:35:30 · 24624 阅读 · 19 评论 -
图像质量评估指标(5) 梯度幅相似性偏差 GMSD
梯度幅相似性偏差 GMSD(以下使用GMSD作为简称)的提出主要是受到图像梯度场对于图像退化比较敏感这一事实的启发提出的。GMSD出现比较晚(2013年),在此之前有很多比较流行的评估指标比如VIF和FSIM等等,但是在当时条件下这些算法的计算耗时相对来讲比较长,因此GMSD的设计主要围绕着下面两个指标进行:1. 提供可信的评价能力2. 使用尽可能小的计算时间开销用论文作者的话说就是:...原创 2019-03-06 11:49:14 · 10109 阅读 · 1 评论 -
图像质量评估指标(4)基于深度学习框架的指标(1)
基于深度学习框架的指标 一基于深度学习框架的IQA指标 (1)如果说传统领域内的指标有什么缺陷的话,我个人认为传统指标的缺陷归根到底还是其所设计的特征不能很好地匹配真实的人类视觉,在某些领域往往会产生同人类视觉感知相左的结论。如果说深度学习IQA指标的设计有什么思想基础的话,我认为应该是从刻画视觉感知的角度出发来制定IQA的指标,形象的来说,拿一个vgg作为特征提取器,然后衡量两张图这些特征的...原创 2019-01-07 22:28:08 · 2635 阅读 · 0 评论 -
图像质量评估指标(3) 特征相似度FSIM
传统全参考图像质量衡量标准FSIM(feature similarity)ssim一经提出引来了很多人的研究,并在其上进行一系列的变种,其中一种比较成功的变种是FSIM,该算法认为一张图片中的所有像素并非具有相同的重要性,比如物体边缘的像素点对于界定物体的结构肯定比其他背景区域的像素点更为重要;另外一种重要的评价指标VIF尽管在不同的子带上具有不同的权重,但是在具体的某一子带上参与计算的像素点均...原创 2018-12-11 08:54:53 · 24335 阅读 · 1 评论 -
图像质量评估指标(2) 结构相似度SSIM
传统全参考图像质量衡量标准 结构相似度结构相似度SSIM 是目前最为成功、使用范围最广泛的评价标准,在图像科学的很多领域都是必备的评价指标,如果对于场景的把握不是非常熟悉使用ssim是一个推荐选项ssim的设计灵感来源于心理学上的韦伯定理,韦伯定理描述的是人体对于感知信号的敏感程度,简而言之就是人体对于信号的变化绝对值并不敏感而对于信号的相对变化值十分敏感,用数学公式表达如下:C=ΔIIC...原创 2018-12-10 17:41:35 · 4800 阅读 · 0 评论 -
图像质量评估指标(1) 评估的意义
图像质量评估,IQA image quality assessment图像质量评估的意义图像质量评估的意义图像质量评估在数字图像科学中具有十分重要的作用,是整个数字图像科学的基石。图像质量评估体系建立往往是一个跨学科的问题,不仅仅设计到从自然世界到数字图像的物理成像,还涉及人类心理与生理上对于信号的感知,因此设计优良的图像质量评估指标不但从特征工程来看是一个重大挑战并且由于涉及很多别的学科的...原创 2018-12-10 17:03:24 · 3097 阅读 · 0 评论