深度学习领域的图像增广(Deep learning Image Augmentation)
设计深度学习的机器视觉领域中,一些半监督、无监督的算法方兴未艾,one shot,few shot的算法纷纷涌现;如何指导深度学习网络以更加接近人学习的思路进行学习成为当前的热点,而数据增广技术是其中的核心。
xiaoxifei
这个作者很懒,什么都没留下…
展开
-
一种数据增广方案(Data Augmentation)MixMatch算法 另附代码分析
MixMatch 算法来源于 MixMatch: A Holistic Approach to Semi-Supervised Learning 这篇文章,客观来说这篇文章并不能严格的算作是数据增广,应该是一种半监督的训练方法,即使用少量数据训练模型使模型达到举一反三的目的。但是我认为这仍然可以归为数据增广的范畴,因为数据增广的目的就是防止模型训练过拟合,使之能在更大的数据集上也有好的表现,只不过...原创 2019-05-22 19:55:24 · 5915 阅读 · 14 评论 -
一种图像增广(Image Augmentation)方式 Mix Up 算法 附有代码解析
这是对facebook研究团队的一篇文章 Mixup: Beyond Empirical Risk Minimization 的解读这篇文章相对于之前提到的Sample pariring来说就不那么神奇了,因为毕竟文章作者在里面有一些相关理论的推导。文章开头通篇讲的是ERM也就是经验风险最小化原则是整个机器学习遵循的原则,作者正是基于此思想才提出了MixUp的方法。在一般的机器学习任务中,比如...原创 2019-05-21 23:31:45 · 9765 阅读 · 10 评论 -
一种图像增广(Image Augmentation)方式 Sample pairing image augmentation
在深度学习领域中常常存在着图像数量不够,或者图像种类不丰富等情况,这一点在医学图像处理中尤其常见,根据我个人经验,使用良好的图像增广(Augmentation)往往能达到事半功倍,甚至是起到决定性的效果。另外,随着半监督、无监督等算法的新起,对图像增广,以及图像relabel的各种算法也开始出现,有必要在这里讨论下一些奇怪但有效的图像增广方法。Sample pairing 增广方法来自于奇...原创 2019-05-21 16:32:17 · 3295 阅读 · 0 评论