关于PatchGAN的理解

GAN一般情况下的网络结构,在一些人的实验中已经表明对于要求高分辨率、高细节保持的图像领域中并不适合,有些人根据这一情况设计了PatchGAN的思路。这种GAN的差别主要是在于Discriminator上,一般的GAN是只需要输出一个true or fasle 的矢量,这是代表对整张图像的评价;但是PatchGAN输出的是一个N x N的矩阵,这个N x N的矩阵的每一个元素,比如a(i,j) 只有True or False 这两个选择(label 是 N x N的矩阵,每一个元素是True 或者 False),这样的结果往往是通过卷积层来达到的,因为逐次叠加的卷积层最终输出的这个N x N 的矩阵,其中的每一个元素,实际上代表着原图中的一个比较大的感受野,也就是说对应着原图中的一个Patch,因此具有这样结构以及这样输出的GAN被称之为Patch GAN

我一开始对这里的概念也不是很明白,多方求证后才明白这个意思。我们可以看一下 Image-to-Image Translation with Conditional Adversarial Networks 这篇文章的大神是如何回复网友关于PatchGAN 的提问的, 问题具体的链接放在文章的末尾。

 

 

问题链接:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/39

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值