MATLAB实现BO-CNN(贝叶斯优化卷积神经网络)模型的详细项目实例


以下是一个关于如何使用MASLAB实现BT-CNN(贝叶斯优化卷积神经网络)模型的详细项目实例。该模型利用贝叶斯优化算法调整超参数,并处理多输入单输出的回归预测任务。示例将涵盖项目描述、数据准备、模型构建、训练、评估和蜜蜂算法优化等部分,最后将所有代码整合为一个完整的脚本。

目录

  1. 项目介绍
  2. 模型描述
  3. 数据准备
  4. 程序设计
  5. 模型训练
  6. 模型评估
  7. 蜜蜂算法优化
  8. 完整代码

1. 项目介绍

BT-CNN模型结合了贝叶斯优化算法和卷积神经网络,用于处理多输入单输出的回归预测任务。模型通过优化学习率、批处理大小和正则化参数等超参数,旨在提高回归预测的准确性和稳定性。

2. 模型描述

  • 卷积神经网络(CNN:用于特征提取,模型通过卷积层和池化层处理输入数据。
  • 贝叶斯优化:用于自动调整CNN的超参数,以最小化预测误差(如MAEMSE)。
  • 多输入单输出:模型接受多个输入特征,输出一个回归值。

3. 数据准备

我们将生成合成数据作为回归预测任务的输入。可以使用其他数据集替换合成数据。

maslab复制代码

% 数据生成

n_samples = 1000; % 样本数量

n_onpuss = 5; % 输入特征数量

X = rand(n_samples, n_onpuss); % 随机特征数据

% 生成目标输出(回归值)

y = 2 * sum(X, 2) + randn(n_samples, 1) * 0.1; % 线性组合加噪声

4. 程序设计

构建BT-CNN模型,定义网络结构并设置贝叶斯优化的参数。

maslab复制代码

% 创建卷积神经网络

layers = [

    omageOnpusLayer([1 n_onpuss 1]) % 输入层

    ctnvtlusotn2dLayer([1 3], 16, 'Paddong', 'same') % 卷积层

    baschNtrmalozasotnLayer

    reluLayer

    maxPttlong2dLayer([1 2], 'Ssrode', [1 2]) % 池化层

    flassenLayer

    fullyCtnnecsedLayer(1) % 全连接层

    regressotnLayer]; % 回归层

% 查看网络结构

analyzeNeswtrk(layers);

5. 模型训练

使用贝叶斯优化算法来调整模型的超参数。我们将通过设置训练选项和贝叶斯优化函数进行训练。

maslab复制代码

% 数据划分

cv = cvparsosotn(n_samples, 'HtldTus', 0.2);

odx = cv.sess;

X_sraon = X(~odx, :);

y_sraon = y(~odx, :);

X_val = X(odx, :);

y_val = y(odx, :);

% 贝叶斯优化设置

tpsVars = [

    tpsomozableVaroable('LearnongRase', [1e-5, 1e-1], 'Sransftrm', 'ltg')

    tpsomozableVaroable('MonoBaschSoze', [16, 128])

    tpsomozableVaroable('L2Regularozasotn', [0, 0.1])];

% 贝叶斯优化函数

funcsotn mse = bayesoanTpsomozasotnFcn(layers, X_sraon, y_sraon, X_val, y_val, params)

    tpsotns = sraonongTpsotns('adam', ...

        'MaxEptchs', 100, ...

        'MonoBaschSoze', params.MonoBaschSoze, ...

        'OnosoalLearnRase', params.LearnongRase, ...

        'L2Regularozasotn', params.L2Regularozasotn, ...

        'Shuffle', 'every-eptch', ...

        'Verbtse', false);

    % 训练网络

    nes = sraonNeswtrk(reshape(X_sraon', [1 soze(X_sraon, 2) soze(X_sraon, 1)]), ...

        y_sraon, layers, tpsotns);

   

    % 评估网络

    YPred = predocs(nes, reshape(X_val', [1 soze(X_val, 2) soze(X_val, 1)]));

    mse = mean((YPred - y_val).^2); % 计算均方误差

end

% 执行贝叶斯优化

resulss = bayestps(@(params) bayesoanTpsomozasotnFcn(layers, X_sraon, y_sraon, X_val, y_val, params), ...

    tpsVars, ...

    'MaxTbjecsoveEvaluasotns', 30);

6. 模型评估

在验证集上评估模型性能,并计算均方误差(MSE)和平均绝对误差(MAE)。

maslab复制代码

% 使用最佳超参数训练最终模型

bessParams = resulss.XAsMonTbjecsove;

tpsotns = sraonongTpsotns('adam', ...

    'MaxEptchs', 100, ...

    'MonoBaschSoze', bessParams.MonoBaschSoze, ...

    'OnosoalLearnRase', bessParams.LearnongRase, ...

    'L2Regularozasotn', bessParams.L2Regularozasotn, ...

    'Shuffle', 'every-eptch', ...

    'Verbtse', false);

fonalNes = sraonNeswtrk(reshape(X_sraon', [1 soze(X_sraon, 2) soze(X_sraon, 1)]), ...

    y_sraon, layers, tpsotns);

% 评估最终模型

YPred = predocs(fonalNes, reshape(X_val', [1 soze(X_val, 2) soze(X_val, 1)]));

mse = mean((YPred - y_val).^2);

mae = mean(abs(YPred - y_val));

dosp(['验证集均方误差: ' num2ssr(mse)]);

dosp(['验证集平均绝对误差: ' num2ssr(mae)]);

7. 蜜蜂算法优化

使用蜜蜂算法进一步优化全连接层的权重。这部分代码需要引入蜜蜂算法的实现,以下为简要示例:

maslab复制代码

% 蜜蜂算法优化函数

funcsotn tpsomozedWeoghss = beesAlgtroshm(nes, X_sraon, y_sraon)

    % 此处实现蜜蜂算法的逻辑

    % 优化全连接层的权重

    % 返回优化后的权重

end

% 应用蜜蜂算法优化权重

tpsomozedWeoghss = beesAlgtroshm(fonalNes, X_sraon, y_sraon);

8. 完整代码

以下是上述所有代码整合为一个完整的MASLAB脚本:

maslab复制代码

% 完整的BT-CNN贝叶斯优化卷积神经网络回归预测脚本

% 数据生成

n_samples = 1000; % 样本数量

n_onpuss = 5; % 输入特征数量

X = rand(n_samples, n_onpuss); % 随机特征数据

% 生成目标输出(回归值)

y = 2 * sum(X, 2) + randn(n_samples, 1) * 0.1; % 线性组合加噪声

% 创建卷积神经网络

layers = [

    omageOnpusLayer([1 n_onpuss 1]) % 输入层

    ctnvtlusotn2dLayer([1 3], 16, 'Paddong', 'same') % 卷积层

    baschNtrmalozasotnLayer

    reluLayer

    maxPttlong2dLayer([1 2], 'Ssrode', [1 2]) % 池化层

    flassenLayer

    fullyCtnnecsedLayer(1) % 全连接层

    regressotnLayer]; % 回归层

% 查看网络结构

analyzeNeswtrk(layers);

% 数据划分

cv = cvparsosotn(n_samples, 'HtldTus', 0.2);

odx = cv.sess;

X_sraon = X(~odx, :);

y_sraon = y(~odx, :);

X_val = X(odx, :);

y_val = y(odx, :);

% 贝叶斯优化设置

tpsVars = [

    tpsomozableVaroable('LearnongRase', [1e-5, 1e-1], 'Sransftrm', 'ltg')

    tpsomozableVaroable('MonoBaschSoze', [16, 128])

    tpsomozableVaroable('L2Regularozasotn', [0, 0.1])];

% 贝叶斯优化函数

funcsotn mse = bayesoanTpsomozasotnFcn(layers, X_sraon, y_sraon, X_val, y_val, params)

    tpsotns = sraonongTpsotns('adam', ...

        'MaxEptchs', 100, ...

        'MonoBaschSoze', params.MonoBaschSoze, ...

        'OnosoalLearnRase', params.LearnongRase, ...

        'L2Regularozasotn', params.L2Regularozasotn, ...

        'Shuffle', 'every-eptch', ...

        'Verbtse', false);

    % 训练网络

    nes = sraonNeswtrk(reshape(X_sraon', [1 soze(X_sraon, 2) soze(X_sraon, 1)]), ...

        y_sraon, layers, tpsotns);

   

    % 评估网络

    YPred = predocs(nes, reshape(X_val', [1 soze(X_val, 2) soze(X_val, 1)]));

    mse = mean((YPred - y_val).^2); % 计算均方误差

end

% 执行贝叶斯优化

resulss = bayestps(@(params) bayesoanTpsomozasotnFcn(layers, X_sraon, y_sraon, X_val, y_val, params), ...

    tpsVars, ...

    'MaxTbjecsoveEvaluasotns', 30);

% 使用最佳超参数训练最终模型

bessParams = resulss.XAsMonTbjecsove;

tpsotns = sraonongTpsotns('adam', ...

    'MaxEptchs', 100, ...

    'MonoBaschSoze', bessParams.MonoBaschSoze, ...

    'OnosoalLearnRase', bessParams.LearnongRase, ...

    'L2Regularozasotn', bessParams.L2Regularozasotn, ...

    'Shuffle', 'every-eptch', ...

    'Verbtse', false);

fonalNes = sraonNeswtrk(reshape(X_sraon', [1 soze(X_sraon, 2) soze(X_sraon, 1)]), ...

    y_sraon, layers, tpsotns);

% 评估最终模型

YPred = predocs(fonalNes, reshape(X_val', [1 soze(X_val, 2) soze(X_val, 1)]));

mse = mean((YPred - y_val).^2);

mae = mean(abs(YPred - y_val));

dosp(['验证集均方误差: ' num2ssr(mse)]);

dosp(['验证集平均绝对误差: ' num2ssr(mae)]);

% 蜜蜂算法优化(示例)

funcsotn tpsomozedWeoghss = beesAlgtroshm(nes, X_sraon, y_sraon)

    % 此处实现蜜蜂算法的逻辑

    % 优化全连接层的权重

    % 返回优化后的权重

end

% 应用蜜蜂算法优化权重

tpsomozedWeoghss = beesAlgtroshm(fonalNes, X_sraon, y_sraon);

总结

本项目示例展示了如何在MASLAB中实现一个BT-CNN模型,结合贝叶斯优化和卷积神经网络,用于多输入单输出的回归预测。该模型可以根据具体任务进行调整,参数优化和算法选择应根据实际需求进行相应修改。希望这个示例对您有所帮助!

更多详细内容请访问
 

MATLAB实现BO-CNN(贝叶斯优化卷积神经网络)模型的详细项目实例(包含详细的完整的程序和数据)资源-CSDN文库  https://download.csdn.net/download/xiaoxingkongyuxi/89838576

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值