详解DFS求组合数 + 去重

无重复元素求组合数

题目描述

从 1~n 这 n 个整数中随机选出 m 个,输出所有可能的选择方案。
输入格式
两个整数 n,m ,在同一行用空格隔开。
输出格式
按照从小到大的顺序输出所有方案,每行1个。
首先,同一行内的数升序排列,相邻两个数用一个空格隔开。
其次,对于两个不同的行,对应下标的数一一比较,字典序较小的排在前面(例如1 3 5 7排在1 3 6 8前面)。
数据范围
n>0 ,
0≤m≤n ,
n+(n−m)≤25
输入样例:
5 3
输出样例:
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

题解一

搜索顺序:枚举每一个数,每个数有选和不选两种状态,枚举完所有数,就能得到所有结果。

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

int n, m;
int a[26];
bool st[26];

void dfs(int u, vector<int>& path)
{
    if(u == n)
    {
        if(path.size() == m)
        {
            for(int i = 0; i < m; i++)
            {
                cout << path[i] << " ";
            }
            
            puts(" ");
        }
        
        return;
    }
    
    //选
    path.push_back(a[u]);
    dfs(u + 1, path);
    path.pop_back();
    
    //不选
    dfs(u + 1, path);
}

int main()
{
    cin >> n >> m;
    for(int i = 0; i < n; i++) a[i] = i + 1;
    vector<int> path;
    dfs(0, path);
    return 0;
    
}


题解二

搜索顺序:枚举m个空位,每个空位有若干选择。
这里要去重一下,因为是求组合数, 1, 2 ,3 和 3, 2, 1是同一种选择,我们强制规定搜索顺序,即每一个空位可以选择的数只能是上一个空位选择的数之后的数。这样就把相同的数但顺序不同的组合过滤了。

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

int n, m;
int a[26];
bool st[26];

void dfs(int u, vector<int>& path, int start)
{
    if(u == m)
    {
        for(int i = 0; i < m; i++)
        {
            cout << path[i] << " ";
        }
        puts(" ");
        return;
    }
    
   for(int i = start; i < n; i++)
   {
       if(!st[i])
       {
           st[i] = true;
           path.push_back(a[i]);
           dfs(u + 1, path, i + 1);
           path.pop_back();
           st[i] = false;
       }
      
   }
}

int main()
{
    cin >> n >> m;
    for(int i = 0; i < n; i++) a[i] = i + 1;
    vector<int> path;
    dfs(0, path, 0);
    return 0;
}




有重复元素求组合数

题目描述

给定一个长度为 n 的可包含重复数字的序列,从中随机选取 m 个数字,输出所有可能的选择方案。
输入格式
第一行包含两个整数 n,m。
第二行包含 n 个正整数。
输出格式
按照从小到大的顺序输出所有方案,每行 1 个。
首先,同一行内的数升序排列,相邻两个数用一个空格隔开。
其次,对于两个不同的行,对应下标的数一一比较,字典序较小的排在前面(例如1 3 5 7排在1 3 6 8前面)。
数据范围
n>0,
0≤m≤n,
n+(n−m)≤25,
序列内所有元素均不大于 n。
输入样例:
5 3
1 2 2 3 3
输出样例:
1 2 2
1 2 3
1 3 3
2 2 3
2 3 3

题解一

搜索顺序:枚举每一个数,由于有重复的数字,所以不能按照每一个数选与不选枚举,比如有三个数字1,2,2,若按照这种顺序,1,2会枚举到两次,因此应该按照某一个数选几个枚举。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 30;

int n, m;
int a[N], path[N];

void dfs(int u, int s) // u代表选到了a[u],s代表当前选了几个数
{
    if (s == m)
    {
        for (int i = 0; i < m; i++) cout << path[i] << " ";
        cout << endl;
        return;
    }
    if (s > m) return;
    if (u > n) return;

    int k = u;
    while (k <= n && a[k] == a[u]) k++;

    int cnt = k - u;
    for (int i = cnt; i >= 0; i--) // 由于输出时要按照字典序输出,所以我们按照从多到少循环,
    {                              // 小的数越多,字典序就越小
        for (int j = u; j < u + i; j++)
            path[s + j - u] = a[u];
        dfs(k, s + i);
    }

}

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> a[i];
    sort(a + 1, a + 1 + n);

    dfs(1, 0);

    return 0;
}

题解二

搜索顺序:枚举m个空位,每个空位有若干选择。
这里要去重一下,因为是求组合数, 1, 2 ,3 和 3, 2, 1是同一种选择,我们强制规定搜索顺序,即每一个空位可以选择的数只能是上一个空位选择的数之后的数。这样就把相同的数但顺序不同的组合过滤了。
重复元素去重:

图一

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

int n, m;
int a[26];
bool st[26];

void dfs(int u, vector<int>& path, int start)
{
    if(u == m)
    {
        for(int i = 0; i < m; i++)
        {
            cout << path[i] << " ";
        }
        puts(" ");
        return;
    }
    
   for(int i = start; i < n; i++)
   {
   
   	  //关键代码:如图一解释
   	   // used[i - 1] == true,说明同一树支a[i - 1]使用过 
       // used[i - 1] == false,说明同一树层a[i - 1]使用过
      // 而我们要对同一树层使用过的元素进行跳过
            
      if(i > 0 && a[i] == a[i - 1] && !st[i - 1])
      {
          continue;
      }
      
      //效果与上面的一样
      /*if(i > start && a[i] == a[i - 1])
      {
          continue;
      }*/
      
      st[i] = true;
      path.push_back(a[i]);
      dfs(u + 1, path, i + 1);
      path.pop_back();
      st[i] = false;
   }
}

int main()
{
    cin >> n >> m;
    for(int i = 0; i < n; i++) cin >> a[i];
    vector<int> path;
    sort(a, a + n);
    dfs(0, path, 0);
    
    return 0;
    
}


参考:

https://leetcode-cn.com/problems/subsets-ii/solution/90-zi-ji-iiche-di-li-jie-zi-ji-wen-ti-ru-he-qu-zho/

https://www.acwing.com/blog/content/2131/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值