为什么手机才用了一两年,电池容量就开始衰减了?

不知道你有没有这种感觉,新手机用了一两年之后就会开始出现电量不够用的现象,高端手机或者本身电池容量就大的手机还好,可以继续使用,但要是电池容量就少,而且还是中低端手机,你会发现电池越来越不耐用,每天光是充电的次数都会让你感到心累。这是什么原因造成的呢?

 

电池容量使用衰减

 

手机电池本来就会有老化的问题,它有一个充放电循环次数的使用极限,一般在300次-500次之间,这里说的充放电循环,不是指你充电一次就算循环一次,而是指电池从0%充电到100%,再从100%放电到0%的完整过程。

当循环次数越来越接近极限数值时,电池的内阻就会增大,也就是电池容量开始衰减,电池损耗越发严重,这样电池容量也就越来越不耐用了。

 

静置衰减

 

可能你会说,既然使用手机,电池就会出现衰减,如果我买回来就把手机放着不用,那它的电池岂不是就不会衰减了?年轻人太天真了!很遗憾,先别说你真的能把新手机放着不用,即便你真的做到了,手机的电池依然会出现静置衰减的情况,也就是电池自己坏掉,当然这个过程会持续很久。

 

使用坏习惯

 

除了电池本身会衰减,我们平时在使用手机时的坏习惯,也会损耗电池。

 

长时间边充电边玩手机

 

很多人喜欢边充电边玩手机,殊不知手机在负载大电流的情况下,电池发热严重,损耗加剧,导致越来越不耐用。

充电时间不当

 

许多人会把手机用到没电了才充电,或者手机充满后还长时间插着数据线充电,这两种充电习惯都会损耗电池寿命。建议机友们不要等到手机彻底耗尽电量才充电,也不要在手机满电的情况下还继续充电,应该做到随用随充,浅充浅放,“少吃多餐”,这更有利于延长手机电池的寿命。

 

手机闲置时也要定期充电

 

现在不少人都有几部手机,所以有些手机没用了就会放着不理,但这样手机的电池损耗会更加快。因为当手机长期闲置没使用没充放电时,电池会漏电而导致电量逐渐降低,可能造成电池过放影响性能。正确的方法是定期给闲置的手机充电放电,以免损耗加剧。


 

极端天气下不要使用手机

 

此外,如果你身处一些气候不太友好的地区,也要注意保护手机,这是因为温度对电池的影响也很大,电池的理想充电环境温度在0℃至45℃,放电环境温度在-20℃至60℃,如果天气过于极端,超过这个区间,电池也会受到影响。

 

现在你终于知道,为什么你的手机买了一两年后就不耐用了吧?虽然手机电池本身存在老化的问题,但如果我们正确地使用它,或许可以延长它的寿命,这样就不用老是受到新手机的引诱啦~

### 如何用Python实现电池容量衰减预测模型 #### 数据预处理 为了构建有效的电池容量衰减预测模型,数据预处理至关重要。通常会先加载并清理原始数据集,去除异常值或缺失的数据点。对于CS2电池的容量预测图,在实验中以CS2_36为样本集,对样本的前600个数据进行了10:1随机抽样后使用Matlab拟合工具箱对双指数模型进行拟合[^1]。 ```python import numpy as np import pandas as pd def preprocess_data(file_path): data = pd.read_csv(file_path) # 前600个数据点按比例采样 sampled_data = data.sample(frac=0.1, random_state=42).head(600) return sampled_data ``` #### 构建预测模型 针对电池容量衰减特性,可以选择多种机器学习算法来建立预测模型。这里采用LSTM神经网络来进行时间序列预测,因为其擅长捕捉长时间依赖关系的特点非常适合此类任务。在具体实践中,使用Adam优化器设置较小的学习率为0.001,并选用平均绝对误差作为损失函数,迭代次数设定为20次[^3]。 ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.optimizers import Adam def build_lstm_model(input_shape): model = Sequential([ LSTM(units=50, activation='relu', input_shape=input_shape), Dense(1) ]) optimizer = Adam(learning_rate=0.001) model.compile(optimizer=optimizer, loss='mae') return model ``` #### 训练与评估模型性能 完成模型搭建之后,下一步就是利用已有的历史记录对其进行训练。考虑到实际应用场景中的新旧数据分布差异可能较大,建议划分一部分最新时段内的观测值作为验证集合用来调整超参数以及防止过拟合现象的发生。此外,还可以通过绘制loss曲线直观展示收敛情况。 ```python history = model.fit( train_ds, epochs=20, validation_data=val_ds ) # 绘制Loss变化趋势图 import matplotlib.pyplot as plt plt.plot(history.history['loss'], label='Training Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.xlabel('Epochs') plt.ylabel('Mean Absolute Error') plt.legend() plt.show() ``` #### 预测未来周期内电池健康状态(SoH) 最后一步则是应用训练好的模型对未来某个时刻点上的电池剩余可用能量百分比做出估计。假设有一个名为`dis_ele`的数据框包含了每次循环后的放电容量信息,则可以通过简单的除法运算计算出对应的SoH值[^4]。 ```python C_initial = dis_ele['capacity'][0] for index, row in dis_ele.iterrows(): current_capacity = row['capacity'] soh_value = (current_capacity / C_initial) * 100 print(soh_value) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值