公众号内容拓展学习笔记(2021.4.2)

公众号内容拓展学习笔记(2021.4.2)


📎 今日要点

  1. CVPR2021:推广到开放世界的在线自适应深度视觉里程计 ⭐️⭐️

    • 主要内容:一个用于深度VO的在线自适应网络(借助场景不可知的几何计算和贝叶斯推理的辅助)。
    • 论文:Generalizing to the Open World Deep Visual Odometry with Online Adaptation
    • 核心要点:
      • 提出一个泛化的深度VO,其使用场景未知几何公式和贝叶斯推断来加速自监督在线自适应性
      • 估计的深度不断被贝叶斯融合网络优化,后续用于训练深度和光流
      • 引入在线学习的深度和光流不确定度以实现精度更高的深度估计和差分高斯牛顿优化。
  2. 【泡泡图灵智库】对抗域特征自适应的夜间图像无监督单目深度估计 ⭐️⭐️

  3. Deepfake防御新思路有了!腾讯首次公开MagDR框架,已被AI顶会接收 ⭐️⭐️

  4. DO-Conv无痛涨点:使用over-parameterized卷积层提高CNN性能 ⭐️⭐️⭐️⭐️

    • 主要内容:作者通过在一个普通的卷积层中加入额外的depthwise卷积操作,构成一个over-parameterized的卷积层,并将其命名为DO-Conv,通过实验证明,使用DO-Conv不仅能够加速网络的训练过程,还能在多种计算机视觉任务中取得比使用传统卷积层更好的结果。
    • 论文:DO-Conv: Depthwise Over-parameterized Convolutional Layer
    • GitHub:https://github.com/yangyanli/DO-Conv
    • 核心要点:
      • 在传统卷积操作中增加额外的参数形成DO-Conv,使用DO-Conv代替传统卷积能够加快收敛速度,在不增加网络推理计算量的前提下提高网络性能
      • 将DO-Conv拓展到DO-DConv和DO-GConv,拓宽其应用范围
      • 通过实验证明了DO-Conv在多种视觉任务中的性能提升
  5. ShuffleNetV2:轻量级CNN网络中的桂冠 ⭐️⭐️

📎 Others

  • 由于图片权限问题,GitHub是完整版,可以点点 star
  • 星标的数量是与个人相关程度,不代表文章内容的好坏
  • 关注我的CSDN博客
  • 关注我的哔哩哔哩
  • 关注我的公众号CV伴读社
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值