公众号内容拓展学习笔记(2021.5.13)
📎 今日要点
-
CVPR 2021 | 无需密集人工标签,用于下游密集预测任务的自监督学习方法出炉 ⭐️⭐️
- Abstract: 无需密集人工标签,用于下游密集预测任务的自监督学习方法
- Paper: Dense Contrastive Learning for Self-Supervised Visual Pre-Training
- Code: https://github.com/WXinlong/DenseCL
- Tips: 该研究提出的新方法 DenseCL(Dense Contrastive Learning)通过考虑局部特征之间的对应关系,直接在输入图像的两个视图之间的像素(或区域)特征上优化成对的对比(不相似)损失来实现密集自监督学习
-
CVPR 2021| 端到端场景无关视觉定位算法(SuperGlue一作出品) ⭐️⭐️
- Abstract: 端到端场景无关视觉定位算法PixLoc
- Paper: Back to the Feature: Learning Robust Camera Localization from Pixels to Pose
- Code: http://github.com/cvg/pixloc
- Tips: PixLoc能够做到场景无关的端到端学习位姿,且能够较好地做到跨场景(室外到室内)的相机定位
-
PatchmatchNet:一种高效multi-view stereo框架 (CVPR2021 Oral) ⭐️⭐️
- Abstract: 一种高效multi-view stereo框架PatchmatchNet
- Paper: PatchmatchNet: Learned Multi-View Patchmatch Stereo
- Code: https://github.com/FangjinhuaWang/PatchmatchNet
- Tips: PatchmatchNet是一种以learning-based Patchmatch为主体的cascade结构,对传统的PatchMatch进行了拓展,提出了adaptive propagation和adaptive evaluation
-
CVPR2021| TimeSformer-视频理解的时空注意模型 ⭐️⭐️
- Abstract: TimeSformer-视频理解的时空注意模型
- Paper: Is Space-Time Attention All You Need for Video Understanding?
- Code: https://github.com/lucidrains/TimeSformer-pytorch
- Tips: TimeSformer通过直接从一系列帧级别的patch中启用时空特征学习,将标准的Transformer体系结构适应于视频
-
来自Google Research:宽模型和深模型学到的是相同的东西吗? ⭐️⭐️
- Abstract: 宽模型和深模型学到的是相同的东西吗?
- Paper: Do Wide and Deep Networks Learn the Same Things? Uncovering How Neural Network Representations Vary with Width and Depth
- Tips: 在研究深度和宽度对内部表征的影响时,我们发现了块结构现象,并证明了它与模型容量的联系。我们还表明,宽模型和深模型在类和样本级别上显示出系统输出差异
-
用超分辨率扛把子算法 ESRGAN,训练图像增强模型 ⭐️⭐️
- Abstract: 用超分辨率扛把子算法 ESRGAN,训练图像增强模型
- Code: https://openbayes.com/console/openbayes/containers/EsAbdwfM6YN
- Tips: 将图像或影片从低分辨率转化为高分辨率,恢复或补足丢失的细节(即高频信息),往往需要用到超分辨率技术,ESRGAN算法的demo