机器学习笔记(七):SVM

本文详细介绍了SVM(支持向量机),从最优化问题、点到超平面的距离到感知器模型。接着探讨线性可分SVM与感知器的区别,强调SVM最大化支持向量距离。接着引入软间隔模型解决异常点问题,通过拉格朗日乘子法和KKT条件推导。最后讨论非线性可分SVM,利用核函数将低维非线性数据转换为高维线性可分数据,特别提到了高斯核函数的应用和价值。
摘要由CSDN通过智能技术生成

一、前导

1、最优化问题

最优化问题一般是指对于某一个函数而言,求解在其指定作用域上的全局最小值问题,一般分为以下三种情况(备注:以下几种方式求出来的解都有可能是局部极小值,只有当函数是凸函数的时候,才可以得到全局最小值):
无约束问题:求解方式一般求解方式梯度下降法、牛顿法、坐标轴下降法等;


等式约束条件:求解方式一般为拉格朗日乘子法

拉格朗日乘子法求解


不等式约束条件:求解方式一般为KKT条件

  • 当可行解x在g(x)<0的区域中的时候,此时直接极小化f(x)即可得到;
  • 当可行解x在g(x)=0的区域中的时候,此时直接等价于等式约束问题的求解。

KKT条件总结

1. 拉格朗日取得可行解的充要条件;
2. 将不等式约束转换后的一个约束,称为松弛互补条件;
3. 初始的约束条件;
4. 初始的约束条件;
5. 不等式约束需要满足的条件。

 

2、点到直线/平面的距离公式

假定点p(x0,y0),平面方程为f(x,y)=Ax+By+C,那么点p到平面f(x)的距离为:

从三维空间扩展到多维空间中,如果存在一个超平面f(X)=θX+b; 那么某一个点X0到这个超平面的距离为:

 

3、感知器模型

3.1  概念

对于m个样本,每个样本n维特征以及一个二元类别输出y:。目标是找到一个超平面,即:。让一个类别的样本满足:\theta \cdot x<0;另外一个类别的满足:\theta \cdot x>0

感知器模型为:

3.2  损失函数

正确分类的样本:y\cdot \theta x>0;错误分类的样本:y\cdot \theta x<0。假定分类错误的样本数为k,可定义损失函数为(分类错误的样本到超平面的距离之和最小):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值