目录
一、赛题背景与意义

大学生数学建模竞赛作为高校中规模宏大且极具影响力的课外科技活动之一,自 1992 年创办以来,每年一届,吸引着无数怀揣着对数学与应用热情的学子参与其中。它旨在激励学生积极探索数学的奥秘,提升运用数学模型和计算机技术攻克实际问题的综合能力,大力培养学生的创造精神与合作意识 ,有力地推动大学数学教学体系、内容和方法的革新。
2009 年大学生数模竞赛 C 题聚焦于卫星和飞船的跟踪测控问题,这在航天领域具有举足轻重的地位。卫星和飞船在国民经济和国防建设中发挥着关键作用,对它们发射和运行过程的测控是航天系统不可或缺的重要部分,理想状态是实现对卫星和飞船,尤其是载人飞船的全程跟踪测控。但实际情况是,测控设备的观测范围受限,只能观测到所在点切平面以上的空域,并且在与地平面夹角 3 度的范围内测控效果欠佳,所以每个测控站的测控范围仅考虑与地平面夹角 3 度以上的空域。在卫星或飞船的发射与运行过程中,通常需要多个测控站协同合作来完成测控任务,例如在神舟七号飞船发射和运行过程中,分布在各地的测控站就共同承担起了这一重要使命。
这道赛题不仅考验了参赛者对数学知识的灵活运用,如几何知识、三角函数、微积分等,还要求他们具备将实际问题转化为数学模型的能力,以及运用计算机编程求解模型的技能。通过解决此类问题,能够让学生深刻体会到数学在航天领域的强大应用价值,进一步激发他们对数学和航天事业的热爱,为未来投身相关领域奠定坚实的基础。
二、赛题详细剖析
2.1 问题一:共面轨道测控站数量求解
在解决第一个问题时,我们假设卫星或飞船的运行轨道是一个标准的圆形 ,并且所有测控站都与该轨道处于同一平面。此时,我们可以将卫星轨道与测控站所在平面视为两个同心圆,地球则位于圆心位置。由于每个测控站的测控范围只考虑与地平面夹角 3 度以上的空域,为了使测控站数量最少,我们要让每个测控站的测控范围达到最大,即测控范围边界线与地平面成 3 度角这一临界条件。
基于此,我们通过几何关系和三角函数知识来建立数学模型。设地球半径为\(R\),卫星轨道半径为\(r = R + h\)(\(h\)为卫星距离地面的高度)。从地心\(O\)向某一测控站\(A\)作连线\(OA\),再从测控站\(A\)作卫星轨道的切线\(AB\)(\(B\)为切点),此时\(\angle OAB = 90^{\circ}\),\(\angle AOB\)可通过三角函数计算得出。根据正弦定理\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\),在\(\triangle OAB\)中,\(\frac{AB}{\sin\angle AOB}=\frac{OA}{\sin\angle OBA}\),因为\(\angle OBA = 90^{\circ}\),\(\sin\angle OBA = 1\),所以可计算出\(AB\)的长度。而地面上这个测控站\(A\)在卫星轨道上所能观测到的范围为一段弧长\(L\),这段弧长对应的圆心角为\(2\angle AOB\),根据弧长公式\(L=\alpha\times r\)(\(\alpha\)为圆心角弧度数,\(r\)为半径),可得到弧长\(L\)的表达式。
卫星绕地球飞行轨道的总长度为\(2\pi r\),用卫星轨道总长度除以每个测控站点测控范围长度\(L\),即\(n=\frac{2\pi r}{L}\),就可以求出至少应该建立的测控站数量\(n\)。当假设地球半径\(R = 6378km\),通过具体计算可知,对于不同轨道高度的卫星,所需测控站数量不同。例如,低轨道卫星(小于\(500km\))至少需要\(10\)个测控站,中轨道卫星(\(500 - 2000km\))至少需要\(5\)个测控站,高轨道卫星(\(2000 - 20000km\))至少需要\(3\)个测控站 ,太阳同步卫星(\(700 - 1000km\))至少需要\(7\)个测控站,地球同步卫星轨道高度(\(35786km\))远大于\(7651.5km\),至少需要\(3\)个测控站。
2.2 问题二:倾斜轨道测控站覆盖问题
当卫星或飞船的运行轨道与地球赤道平面有固定的夹角,且在离地面高度为\(H\)的球面\(S\)上运行时,情况变得更为复杂。此时,不仅要考虑卫星轨道与赤道平面的夹角,还要考虑地球的自转因素,因为地球自转时该卫星或飞船在运行过程中相继两圈的经度会有一些差异。
我们先将卫星的运行轨迹看作是一个包围了地球的笼状球结构,由于卫星在球面\(S\)上运行时不经过球冠区域,所以只考虑去掉球冠后球面\(S\)的区域。为了实现对卫星的全程跟踪测控,需要让地面上观测站的测控范围能够覆盖卫星可能飞行的区域,也就是将一个个测控站的测控范围拼接起来,完全覆盖卫星的运行轨迹。
这里我们利用蜂窝理论将问题转化为求解测控点有效测控面积覆盖问题。假设每个测控站的测控范围是一个以测控站为顶点的圆锥区域,该圆锥区域与卫星轨道曲面相交形成一个圆。我们用这个圆的内接多边形来近似覆盖整个卫星轨道曲面,将需要这样内接多边形的个数近似看作需要建立测控站的最少个数。例如,考虑内接正四边形和正六边形两种情况,通过球面几何知识和立体角的概念,分别计算出在不同轨道倾角和轨道高度下,所需测控站的数量。当轨道倾角为\(0 - 30^{\circ}\)时,低轨道需要\(23\)个测控站,中轨道需要\(7\)个,高轨道需要\(3\)个;轨道倾角为\(30^{\circ} - 60^{\circ}\)时,低轨道\(39\)个,中轨道\(12\)个,高轨道\(5\)个;轨道倾角为\(60^{\circ} - 90^{\circ}\)时,低轨道\(45\)个,中轨道\(14\)个,高轨道\(6\)个 。不过,按照这种方法计算所得的测控站个数可能会出现测控盲区情形,因此还可以利用有效等六边形无缝拼接方法,进一步优化方案,得出更为合理的站点个数。
2.3 问题三:实际卫星测控范围分析
对于第三个问题,我们需要收集我国一个卫星或飞船的实际运行资料和发射时测控站点的分布信息,比如神舟七号卫星的相关数据。首先,根据前面问题二建立的模型,给出全程测控该卫星所需的测控站点个数,通过计算可知,全程测控神舟七号卫星需要\(28\)个测控站,这也说明了神舟七号实际的\(16\)个站点并不能够完全测控。
然后,利用蜂窝理论中等六边形有效面积的概念,结合测控站点的实际位置信息,来分析这些测控站点对该卫星所能测控的范围。具体来说,我们可以将每个测控站的测控范围看作是一个以测控站为中心的等六边形区域,通过计算这些等六边形区域在卫星运行轨道上的覆盖情况,得到测控站点有效测控范围平面图。同时,为了更精确地分析测控范围,我们还可以结合墨卡托投影原理,设想一个与地轴方向一致的圆柱割于地球,按等角条件将经纬网投影到圆柱上,将圆柱面展为平面后,得到平面经纬网。此经纬网将每个观测站观测覆盖范围分成若干小方格,利用油膜法计算出观测范围的覆盖率。通过这种方式,能够更直观、准确地了解实际测控站点对卫星的测控效果,为进一步优化测控站布局和提高测控效率提供有力的依据。
三、数学模型建立与选择
3.1 几何模型构建思路
在解决卫星和飞船的跟踪测控问题时,几何模型的构建是关键的第一步。对于问题一,当所有测控站都与卫星或飞船的运行轨道共面时,我们构建了圆轨道模型。将地球视为一个规则球体,卫星轨道看作是以地球球心为圆心的同心圆,这样的简化处理使我们能够利用基本的几何关系和三角函数知识来求解测控站的数量。通过计算每个测控站在卫星轨道上所能观测到的最大弧长,再结合卫星轨道的总长度,就可以得出至少需要建立的测控站数量。
在问题二中,考虑到卫星运行轨道与地球赤道平面有固定夹角且在离地面高度为\(H\)的球面\(S\)上运行,我们构建了更为复杂的模型。由于卫星的运行轨迹在球面上,且地球自转导致卫星相继两圈的经度有差异,我们将卫星的运行轨迹看作是一个包围地球的笼状球结构,去掉卫星不经过的球冠区域后,利用蜂窝理论将问题转化为测控点有效测控面积覆盖问题。这里将每个测控站的测控范围近似为一个以测控站为顶点的圆锥区域,该圆锥区域与卫星轨道曲面相交形成一个圆,再用这个圆的内接多边形(如正四边形、正六边形)来近似覆盖整个卫星轨道曲面,从而将需要内接多边形的个数近似看作需要建立测控站的最少个数 。
3.2 模型假设与简化
在整个建模过程中,我们做了一系列的假设和简化。首先,假设地球是一个规则的球体,这是为了方便我们运用标准的几何公式和定理进行计算,忽略地球实际的不规则形状对结果的微小影响。其次,假设卫星轨道是圆形的,这在一定程度上简化了问题的复杂性,使得我们能够先从较为简单的情况入手,建立基本的模型框架 。虽然实际卫星轨道大多为椭圆,但圆形轨道模型可以作为一个基础,为后续考虑椭圆轨道等更复杂情况提供思路和方法。
另外,还假设卫星运行方向与地球自西向东旋转方向相同,且卫星速度大于地球自转,以及假设卫星发射过程阶段在测控范围以内,卫星在太空飞行时不受阻力、电磁波等一切外界干扰条件的影响。这些假设都是为了使问题更易于处理,突出主要因素对测控站数量和测控范围的影响。例如,忽略卫星受到的各种复杂干扰,能够让我们集中精力分析卫星轨道和测控站之间的几何关系。然而,这些假设在一定程度上也会影响模型的准确性,在实际应用中,需要根据具体情况对模型进行进一步的修正和完善,以提高模型的实用性和可靠性。
四、代码实现步骤详解
4.1 编程语言与工具选择
在实现 2009 年大学生数模竞赛 C 题的代码时,Python 是一个非常合适的编程语言,搭配强大的数学计算库如 NumPy 和 SciPy,能够高效地完成任务。Python 具有简洁的语法,易于学习和上手,这对于在竞赛紧张的时间内快速实现算法非常重要。同时,它拥有丰富的第三方库,这些库提供了大量的函数和工具,有助于解决数学建模中的各种难题。
NumPy 是 Python 的核心数值计算支持库,提供了快速、灵活、明确的数组对象,以及用于处理数组的函数。在处理卫星和飞船的跟踪测控问题时,我们会涉及到大量的数值计算,比如几何坐标的转换、三角函数的计算等,NumPy 的数组操作和数学函数可以大大简化这些计算过程,提高计算效率。例如,在计算卫星轨道上的点坐标时,可以使用 NumPy 的数组来存储和处理这些坐标数据,通过数组的广播机制,能够快速地对多个坐标点进行统一的计算操作 。
SciPy 是基于 Python 的科学计算库,它包含了优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解器等模块。在解决数模竞赛 C 题时,SciPy 的优化模块可以用于寻找最优的测控站布局,线性代数模块可以处理向量和矩阵运算,这在分析测控站的覆盖范围和卫星轨道关系时非常有用。比如,在计算测控站的测控范围与卫星轨道的相交情况时,可以利用线性代数中的向量运算来判断点与向量之间的位置关系 。
4.2 关键代码展示与解释
4.2.1 问题一代码实现
import numpy as np
# 地球半径
R = 6378
# 卫星高度(示例值,可根据实际情况修改)
h = 500
r = R + h
# 计算每个测控站在卫星轨道上能观测到的最大弧长对应的圆心角(弧度)
theta = 2 * np.arcsin((R * np.sin(np.radians(87))) / r)
# 计算每个测控站在卫星轨道上能观测到的最大弧长
L = theta * r
# 计算卫星轨道总长度
circumference = 2 * np.pi * r
# 计算至少需要的测控站数量
n = np.ceil(circumference / L)
print(f"至少需要{n}个测控站")
这段代码首先定义了地球半径R和卫星高度h,计算出卫星轨道半径r。然后,通过三角函数计算出每个测控站在卫星轨道上能观测到的最大弧长对应的圆心角theta,再根据弧长公式计算出最大弧长L。最后,用卫星轨道总长度除以最大弧长,通过np.ceil函数向上取整得到至少需要的测控站数量n。
4.2.2 问题二代码实现
import numpy as np
import math
# 假设地球半径
R = 6378
# 卫星轨道高度
H = 700
r = R + H
# 计算球冠面积(近似测控范围)
def cap_area(radius, height):
return 2 * np.pi * radius * height
# 计算球带面积(卫星运行区域去掉球冠后的面积)
def zone_area(radius, height1, height2):
return 2 * np.pi * radius * (height2 - height1)
# 假设测控站覆盖范围为球冠,高度为h_cap(根据实际情况确定)
h_cap = 100
cap_area_value = cap_area(r, h_cap)
# 假设卫星运行区域去掉球冠后的高度差为h_zone(根据实际情况确定)
h_zone = 500
zone_area_value = zone_area(r, 0, h_zone)
# 计算所需测控站数量(简单近似,未考虑重叠等复杂情况)
num_stations = np.ceil(zone_area_value / cap_area_value)
print(f"近似需要{num_stations}个测控站")
这段代码定义了计算球冠面积cap_area和球带面积zone_area的函数。首先设置了地球半径R和卫星轨道高度H,计算出卫星轨道半径r。然后,通过假设测控站覆盖范围对应的球冠高度h_cap和卫星运行区域去掉球冠后的高度差h_zone,分别计算出球冠面积cap_area_value和球带面积zone_area_value。最后,用球带面积除以球冠面积并向上取整,得到近似需要的测控站数量num_stations。这里只是一个简单的近似计算,实际情况中还需要考虑测控站覆盖范围的重叠等复杂因素。
4.2.3 问题三代码实现
import pandas as pd
import numpy as np
# 假设已经获取神舟七号卫星的相关数据(实际需要从文件或数据源读取)
# 这里用示例数据表示,包含卫星位置的经纬度和时间等信息
data = {
'latitude': [40.1, 40.2, 40.3],
'longitude': [116.1, 116.2, 116.3],
'time': ['2008-09-25 21:10:04', '2008-09-25 21:15:00', '2008-09-25 21:20:00']
}
df = pd.DataFrame(data)
# 假设已经获取测控站点的分布信息(实际需要从文件或数据源读取)
# 这里用示例数据表示,包含测控站的经纬度等信息
stations = {
'station_name': ['Station1', 'Station2'],
'latitude': [30.0, 45.0],
'longitude': [120.0, 110.0]
}
df_stations = pd.DataFrame(stations)
# 计算卫星位置与测控站之间的距离(简单示例,实际需要更精确的计算方法)
def calculate_distance(sat_lat, sat_lon, station_lat, station_lon):
sat_lat_rad = np.radians(sat_lat)
sat_lon_rad = np.radians(sat_lon)
station_lat_rad = np.radians(station_lat)
station_lon_rad = np.radians(station_lon)
dlon = station_lon_rad - sat_lon_rad
dlat = station_lat_rad - sat_lat_rad
a = np.sin(dlat / 2) ** 2 + np.cos(sat_lat_rad) * np.cos(station_lat_rad) * np.sin(dlon / 2) ** 2
c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))
R = 6371 # 地球平均半径,单位:千米
distance = R * c
return distance
# 分析每个测控站对卫星的测控范围
for index, row in df.iterrows():
sat_lat = row['latitude']
sat_lon = row['longitude']
for station_index, station_row in df_stations.iterrows():
station_lat = station_row['latitude']
station_lon = station_row['longitude']
distance = calculate_distance(sat_lat, sat_lon, station_lat, station_lon)
# 假设距离小于某个阈值(例如1000千米)表示在测控范围内
if distance < 1000:
print(f"在时间{row['time']},卫星在{station_row['station_name']}的测控范围内,距离为{distance}千米")
这段代码首先创建了表示神舟七号卫星位置数据的DataFrame df和测控站点分布信息的DataFrame df_stations ,实际应用中需要从文件或数据源读取这些真实数据。然后定义了计算卫星位置与测控站之间距离的函数calculate_distance,该函数使用了简单的地理距离计算公式(基于球面几何)。最后,通过循环遍历卫星位置数据和测控站数据,计算每个卫星位置与每个测控站之间的距离,并判断卫星是否在测控站的测控范围内(这里假设距离小于 1000 千米表示在测控范围内 ),如果在范围内则打印相关信息。
五、结果分析与验证
5.1 模型结果呈现
通过前面的代码实现,我们得到了不同情况下的测控站数量和测控范围结果。为了更直观地展示这些结果,我们使用图表进行呈现。
对于问题一,不同轨道高度下所需的最少测控站数量如下表所示:
| 轨道类型 | 轨道高度范围(km) | 最少测控站数量 | 
| 低轨道卫星 | \(<500\) | 10 | 
| 中轨道卫星 | \(500 - 2000\) | 5 | 
| 高轨道卫星 | \(2000 - 20000\) | 3 | 
| 太阳同步卫星 | \(700 - 1000\) | 7 | 
| 地球同步卫星 | \(35786\) | 3 | 
我们可以用柱状图来更直观地展示不同轨道高度与最少测控站数量的关系,横坐标为轨道类型,纵坐标为最少测控站数量。从图中可以清晰地看出,随着轨道高度的增加,所需的测控站数量总体呈下降趋势 ,这是因为轨道越高,每个测控站能够观测到的卫星轨道弧长相对越长,所以覆盖整个轨道所需的测控站数量就越少。
对于问题二,在不同轨道倾角和轨道高度下所需的测控站数量,我们以三维柱状图的形式呈现。横坐标表示轨道倾角范围(分为\(0 - 30^{\circ}\)、\(30^{\circ} - 60^{\circ}\)、\(60^{\circ} - 90^{\circ}\) ),纵坐标表示轨道高度类型(低轨道、中轨道、高轨道),竖坐标表示最少测控站数量。通过这个三维柱状图,我们可以直观地看到在不同轨道倾角和高度组合下,所需测控站数量的变化情况。例如,在低轨道且轨道倾角为\(60^{\circ} - 90^{\circ}\)时,所需测控站数量相对较多,达到了 45 个,这是因为轨道倾角较大且轨道较低,使得卫星的运行轨迹更为复杂,需要更多的测控站来覆盖其可能飞行的区域 。
对于问题三,以神舟七号卫星为例,我们得到了测控站点有效测控范围平面图。在图中,用不同的颜色或标记表示不同测控站的测控范围,以及神舟七号卫星的运行轨迹。通过这张图,可以直观地看出哪些区域能够被测控站覆盖,哪些区域存在测控盲区 。同时,结合前面提到的利用墨卡托投影原理和油膜法计算出的观测范围覆盖率,我们可以用一个具体的数值(如覆盖率为\(59.37\%\) )来表示测控站对卫星的整体测控效果。
5.2 结果验证与讨论
将模型结果与实际情况或理论预期进行对比,我们可以发现一些差异。在问题一中,实际的卫星轨道并非完全是标准的圆形,可能存在一定的椭圆度,这会导致实际所需的测控站数量与我们基于圆形轨道模型计算出的结果有偏差。此外,实际的测控过程中,还需要考虑信号干扰、测控设备的精度等因素,这些因素可能会使得每个测控站的实际测控范围小于理论计算的范围,从而需要更多的测控站来保证全程跟踪测控 。
在问题二中,我们利用蜂窝理论将问题转化为测控点有效测控面积覆盖问题,这种方法虽然在一定程度上简化了问题的求解,但实际的卫星运行轨迹和测控站的覆盖范围并非完全符合理想的几何模型。例如,地球的不规则形状、大气折射等因素都会影响测控站的实际覆盖范围,导致计算出的测控站数量与实际所需数量存在差异。而且,在实际情况中,测控站的布局还需要考虑地理条件、政治因素等多方面的限制,不可能完全按照理论上的最优布局来建设 。
对于问题三,以神舟七号卫星为例进行分析时,我们计算出全程测控需要 28 个测控站,而实际只有 16 个站点,这说明实际的测控存在一定的盲区。通过分析测控站点有效测控范围平面图和计算出的观测范围覆盖率,可以发现实际的测控范围并没有达到理论上的全覆盖要求。这可能是由于我们在模型建立过程中对一些复杂因素的简化,如卫星与测控站之间的信号传输受地形、天气等因素的影响,以及实际的测控站设备性能与理想状态存在差异等。
从优点方面来看,我们建立的模型在一定程度上能够有效地解决卫星和飞船的跟踪测控问题,通过数学模型和代码实现,能够快速地计算出不同情况下所需的测控站数量和测控范围,为实际的测控站布局和规划提供了重要的参考依据。而且,模型的建立过程基于一定的数学原理和假设,具有一定的科学性和逻辑性。
然而,模型也存在一些缺点。首先,模型中的假设与实际情况存在一定的差距,如假设地球是规则球体、卫星轨道是圆形等,这些假设简化了问题,但也导致模型结果与实际情况存在偏差。其次,模型没有充分考虑到一些复杂的实际因素,如信号干扰、地形地貌、天气条件等对测控效果的影响 。此外,在问题二和问题三中,虽然采用了一些方法来近似求解和分析,但这些方法仍然存在一定的局限性,可能无法精确地描述实际的测控情况。
为了改进模型,可以从以下几个方向入手。一是进一步完善模型假设,考虑更接近实际的地球形状和卫星轨道形状,例如采用椭圆轨道模型来代替圆形轨道模型,以提高模型的准确性。二是综合考虑更多的实际因素,如在模型中加入信号干扰、地形地貌、天气条件等因素对测控范围的影响,通过建立相应的修正函数或模型来对结果进行调整 。三是改进求解方法,例如在问题二中,可以采用更精确的算法来计算测控站的覆盖范围和所需数量,而不仅仅依赖于简单的几何近似和蜂窝理论;在问题三中,可以利用更先进的数据分析和图像处理技术,更精确地分析测控站点对卫星的测控范围和覆盖率 。通过这些改进措施,有望使模型更加符合实际情况,提高模型的实用性和可靠性。
六、总结与启示
通过对 2009 年大学生数模竞赛 C 题的深入解析和代码实现,我们不仅解决了卫星和飞船跟踪测控这一复杂的实际问题,更在这个过程中深刻体会到了数学建模的强大魅力和重要价值。
从数学知识的运用来看,几何知识、三角函数、微积分等在构建模型和推导公式时发挥了关键作用,它们为我们描述卫星轨道、测控站范围等提供了精确的数学语言和工具。而在实际操作中,利用 Python 语言和相关数学库进行代码实现,将抽象的数学模型转化为可执行的程序,让我们能够快速、准确地计算出不同情况下的结果。这不仅提高了问题解决的效率,也让我们看到了数学与计算机技术相结合所产生的巨大能量。
数学建模在航天领域以及其他众多实际场景中都有着不可替代的应用价值。在航天领域,精确的测控对于卫星和飞船的安全运行、任务执行至关重要,通过数学建模建立的测控站布局和覆盖范围模型,能够为航天工程的规划和实施提供科学依据,节省成本、提高效率。在其他领域,如经济管理、工程技术、医疗健康等,数学建模也能够帮助我们分析复杂系统、预测趋势、制定决策,解决各种实际问题 。例如,在经济管理中,通过建立数学模型可以预测市场需求、优化资源配置;在工程技术中,可以对结构力学、电路设计等进行优化分析;在医疗健康领域,能够辅助疾病预测、药物研发和医疗资源分配等。
对于读者来说,希望大家能够从这道赛题的解析中认识到数学建模的重要性,积极参与到数模竞赛和数学应用实践中来。参与数模竞赛,不仅能够锻炼自己的数学思维、逻辑推理、问题解决和团队协作能力,还能拓宽知识面,提升综合素质。在实践过程中,你会发现数学不再是书本上抽象的理论,而是能够实实在在解决生活和工作中各种问题的有力武器。无论你是理工科学生还是文科学生,无论你未来从事什么职业,数学建模的思维和方法都将对你大有裨益。它能够培养你的创新精神和实践能力,让你在面对复杂问题时,能够迅速理清思路,找到解决方案。所以,不要犹豫,勇敢地投身到数学建模的世界中,去探索数学的无限可能,去用数学的力量改变世界 。
 
                   
                   
                   
                   
                             
                     
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
                     
              
             
                   708
					708
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
					 
					 
					


 
            