了解树,二叉树和堆(数据结构)

1.树

概念: 说到树,大家并不陌生.随处可见,但是与数据结构中树不一样,这里树是一种的非线性的的,由n(n >= 0)个结点组成的一个具有层次关系的集合.把它叫做树是因为它看起来像个一颗倒挂的树,也就是说它是根朝上,而叶朝下的.

  • 有一个特殊的结点,称为根节点,根结点没有前驱结点(前驱就是指逻辑上前一个结点)
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继(后继就是逻辑上后一个结点)

在这里插入图片描述在这里插入图片描述
注意: 树形结构中,子树之间不能有交集,否则就不是树形结构
在这里插入图片描述

关于树的基本术语

在这里插入图片描述

  • 结点的度: 一个节点含有的子树的个数称为该节点的度; 如上图:A结点的度为6
  • 叶结点或者终端结点: 度为0的结点称为叶结点;如上图: B、C、H、I、P、Q、K、L、M、N都为叶结点
  • 分支结点: 度不为0的结点, 有D、E、F、G等等
  • 父结点(双亲结点): 若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
  • 孩子结点(子结点): 一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
  • 兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
  • 树的度: 一颗树中,最大的结点的度称为树的度; 如上图:树的度为6
  • 结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
  • 树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
  • 堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
  • 结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
  • 子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
  • 森林:由m(m>0)棵互不相交的树的集合称为森林;

树的结构定义表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间
的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法
等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

typedef int DataType;
struct Node
{
 struct Node* _firstChild1; // 第一个孩子结点
 struct Node* _pNextBrother; // 指向其下一个兄弟结点
 DataType _data; // 结点中的数据域
};

树的逻辑结构:
在这里插入图片描述
树的物理结构:
在这里插入图片描述
学过Linux的同学们,大家应该知道Linux的目录结构就是树状结构
在这里插入图片描述

2.二叉树

概念

概念 :一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

在这里插入图片描述

从图中可以看出:

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
    现实中的二叉树:
    在这里插入图片描述
    特殊二叉树
  3. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
  4. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
    在这里插入图片描述

二叉树的性质

  1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 个结点.

  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h - 1.

  3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有 n0= n2+1

  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=㏒2(n + 1) . ( ㏒2(n + 1)是以2为底,n+1为对数)

  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

  • 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
  • 若2i+1<n,左孩子序号:2i+1,当2i+1>=n则无左孩子
  • 若2i+2<n,右孩子序号:2i+2,当2i+2>=n则无右孩子

二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1.顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
在这里插入图片描述

2.链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链.
在这里插入图片描述

二叉链的定义
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
    struct BinTreeNode* _pLeft; // 指向当前结点左孩子
    struct BinTreeNode* _pRight;//指向当前结点右孩子
    BTDataType _data; // 当前结点值域
}

二叉树的顺序结构及实现

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段

在这里插入图片描述
父节点与子节点的小标位置关系:
left = (parent * 2) + 1
right = (parent * 2 ) + 2
即 parent = (child - 1) / 2

3.堆

堆的概念及结构

概念 :如果有一个关键码的集合K = { k0, k1, k2, …, kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:Ki <= K (2i+1) 且 Ki <= K (2i + 2) (或者是 Ki >= K (2*i + 1) 且 Ki >= K(2i + 2) ) i = 0, 1, 2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。

在这里插入图片描述
在这里插入图片描述

堆的实现

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

int array[] = {27,15,19,18,28,34,65,49,25,37};

在这里插入图片描述
在这里插入图片描述
向下调整的算法:

void Swap(int* s1, int* s2)
{
	int tmp = *s1;
	*s1 = *s2;
	*s2 = tmp;
}

void AdjustDown(int* arr, int parent, int n)
{
	int child = parent * 2 + 1;
	while (child > n)
	{
		if (arr[child] > arr[child + 1]) // 建小堆,要建大堆则 arr[child] < arr[child + 1]
		{
			child++;
		}

		if (child + 1 < n && arr[child] < arr[parent]) // 建小堆,要建大堆则 arr[child] < arr[parent]
		{
			Swap(&arr[child], &arr[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}

}

堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算
法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的
子树开始调整,一直调整到根节点的树,就可以调整成堆。

int a[] = {1,5,3,8,7,6};

在这里插入图片描述

堆的删除

删除堆是删除堆顶的数据,将堆顶的数据跟最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。

堆的应用

堆排序

void HeapSort(int* arr, int size)
{
	for (int i = (size - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(arr, i, size);
	}

	int end = size - 1;
	while (end)
	{
		Swap(&arr[0], &arr[end]);
		AdjustDown(arr, 0, end);
		end--;
	}


}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值