各省、地级市电子商务数据(2011-2022年)

资源介绍

一、全国286个地级市城市电子商务交易额销售额采购额

2011-2022年

286个地级市2011年到2022年电子商务交易额,参考黄赜琳(2022)方福前(2015)做法,利用地级市快递业务量占本省快递业务量比重做权重将省级数据分解,省级数据来源于中国统计年鉴,2011-2012数据来源于中国电子商务报告以及根据2013年省份占全国比重的情况推算,大致趋势没问题。

电子商务交易额,通常称为网站成交金额,是电商平台企业成交类指标的一个重要组成部分。它主要指在电子商务平台上,买家和卖家之间完成的所有交易的总金额,这包括了商品的销售、服务的提供以及数字产品的交易等。电子商务交易额简称GMV(Gross Merchandise Volume),即商品交易总额,是反映电子商务平台交易活跃程度的一个重要指标。既包括了已经付款的部分,也包括了未付款但已经确认订单的部分。因此,GMV指标并不是实际的交易数据,而是基于订单生成的一个统计值。

中国各省的电子商务指数数据,基于阿里研究院的阿里巴巴平台海量数据,涵盖网商指数与网购指数两个方面,综合直观地反映了各省电子商务发展水平,采用熵值法进行测算。具体而言:

(3)计算方法:

网商密度指数(取以下两者的平均数):B2B网商密度=B2B 网商数量/人口数量,零售网商密度=零售网商数量/人口数量

网商交易水平指数:规模以上网商交易总额占比=全年成交额超过24 万的零售商数量/零售网商数量

网购密度指数:网购密度=网购消费者数量/人口数量

网购消费水平指数:规模以上网购消费者占比=全年网购额超过1 万的消费者数量/网购消费者数量.

数据已进行标准化处理,各省之间的数据可比,也可考察数据的动态变化。

数据来源:阿里研究院发布的电子商务发展指数、各省份统计年鉴、各地级市统计年鉴、县域统计年鉴、各级国民经济和社会发展统计公报、政府工作报告。

【下载→

方式一(推荐):主页 个人 简介

经管数据集-CSDN博客

方式二:数据下载方式汇总-CSDN博客

### 地级市电子商务统计数据概述 中国的地级市电子商务交易额数据可以通过多种方式获取,这些数据涵盖了从20112022的详细记录。为了分解省级数据至地市级层面,研究者采用了特定的方法论来估算各个城市的电子商务活动规模。 具体来说,对于286个地级市2011起的电子商务交易额计算方法如下:通过分析各城市快递业务量在其所在省份中的占比作为权重因子,以此分配省级整体电商交易额至更细粒度的地级市级别[^3]。这种方法能够较为精确地反映出不同地区间电子商务发展的差异性和动态变化情况。 此外,在实际操作过程中所使用的原始省级数据主要来源于官方出版物《中国统计鉴》;而对于早期几(如2011-2012间)缺乏直接测量的数据,则依据后续度中各省在全国范围内所占比例关系来进行合理推测,从而确保整个时间序列的一致性与连贯性。 另外值得注意的是,“电子商务交易额”这一概念本身也得到了清晰定义——它指的是在各类电子商贸平台上发生的所有买卖行为所产生的货币价值总量,并被简称为GMV (Gross Merchandise Volume),即商品交易总额,成为衡量电商平台运营状况的核心指标之一[^5]。 以下是用于处理此类问题的部分Python代码实现: ```python import pandas as pd # 假设我们有一个包含所有必要字段的数据框 df def calculate_city_e_commerce(df, year_column='Year', province_column='Province', city_column='City', express_weight_column='Express_Weight', provincial_data_column='Provincial_E_Commerce_Data'): """ 计算每个城市的电子商务交易额 参数: df (pd.DataFrame): 输入数据集 year_column (str): 份列名,默认为 'Year' province_column (str): 省份列名,默认为 'Province' city_column (str): 城市列名,默认为 'City' express_weight_column (str): 快递权重列名,默认为 'Express_Weight' provincial_data_column (str): 省级电子商务数据列名,默认为 'Provincial_E_Commerce_Data' 返回: pd.DataFrame: 输出带有每座城市对应电子商务交易额的新表格 """ result_df = ( df.groupby([year_column, province_column, city_column]) .apply(lambda group: group[provincial_data_column].iloc[0]*group[express_weight_column].sum()) .reset_index(name="E_Commerce_Amount_By_City") ) return result_df # 示例调用函数 dataframe_example = pd.read_csv('example.csv') # 替换为您的文件路径 calculated_results = calculate_city_e_commerce(dataframe_example) print(calculated_results.head()) ``` 上述脚本展示了如何基于给定框架结构化地解决这个问题的技术手段。此程序片段接受一个DataFrame对象作为输入参数并返回一个新的DataFrame实例,其中包含了按度划分的城市级别的电子商务交易金额信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值