抽象代数II

该博客详细探讨了整环的性质,特别是主理想域(PID)和唯一分解域(UFD)的概念。讨论了整除关系、整环中的等价关系和预序关系,以及整除与主理想的联系。博客还介绍了PID的性质,如PID中的每一个非零理想都是主理想的,并解释了如何通过最大公因数(gcd)和最小公倍数(lcm)从PID到UFD的转换。此外,还讨论了整环的坍缩、环的扩展和域的扩张,以及欧几里得整环的概念,如代余除法。最后,提到了高斯引理、艾森斯坦判别法以及域扩张的最小多项式。
摘要由CSDN通过智能技术生成

PIDUID性质

∃ a ∈ R , I = ( a ) \exist a\in R,I=(a) aR,I=(a)->主理想

所有的都是主理想就是PID

p ∈ R / 0 不可约 p\in R/{0} 不可约 pR/0不可约<->p=ab 那么 a ∈ U a\in U aU或者 b ∈ U b\in U bU

如果a有两种不同的分解方法,那么一定会有相同个数的不可约约数,他们之间的不可约元素只存在一种排列+作用一些单位次而已。

R+*是UFD,那么R+*元素都有分解而且分解方法唯一

F ⊂ E u c l i d D o m a i n ⊂ P I D ⊂ U F D ⊂ I n t e g r a l D o m a i n F\subset Euclid Domain \subset PID\subset UFD\subset Integral Domain FEuclidDomainPIDUFDIntegralDomain

再向前就是有限域,再向后就是普通交换环。

First of all : PID is UFD

整环, a ∣ b < − > ∃ c , b = a c a|b<->\exist c,b=ac ab<>c,b=ac

等价关系 : 假设是一个整环 a   b < − > ∃ u ∈ U , s . t . a = u b a~b <-> \exist u\in U,s.t. a=ub a b<>uU,s.t.a=ub

自反性简单

对称性: a   b − > b   a a~b->b~a a b>b a

a = u b , u ∈ U u − 1 a   b u − 1 ∈ U a=ub,u\in U u^{-1}a~b u^{-1}\in U a=ub,uUu1a bu1U

传递性:

a = u b , c = v a a=ub,c=va a=ub,c=va那么 c = ( v u ) b    v u ∈   U c=(vu)b~~ vu\in~ U c=(vu)b  vu U

整除是Preorder原序

只满足自反性传递性,没有反对称性。

a ∣ a , a ∣ = a a|a,a|=a aa,a=a

a ∣ b , b ∣ c − > a ∣ c a|b,b|c->a|c ab,bc>ac

a ∣ b ∣ c − > a ∣ b 且 b ∣ c a|b|c -> a|b且b|c abc>abbc

a ∣ b = c ∣ d − > a ∣ d , b = c , a ∣ b , b ∣ d a|b=c|d->a|d,b=c,a|b,b|d ab=cd>ad,b=c,ab,bd

注意,可能a|b,b|a 但是 a ≠ b a\not = b a=b,这就是不反对称

a ∣ b & b ∣ a a|b \& b|a ab&ba 当且仅当 a   b a~b a b

a = b d = ( a c ) d = a ( c d ) a=bd=(ac)d=a(cd) a=bd=(ac)d=a(cd)

a ( c d − 1 ) = 0 a(cd-1)=0 a(cd1)=0

c d = 1 , c d ∈ U cd=1,cd\in U cd=1,cdU

so a~b

a   b ∃ u ∈ U a = u b b ∣ a a~b \exist u\in U a=ub b|a a buUa=ubba

u − 1 a = b , a ∣ b u^{-1}a=b,a|b u1a=b,ab

素元素是 p ∣ a b < − > p ∣ a   o r   p ∣ b p|ab<->p|a ~or~ p|b pab<>pa or pb

素数是这个定义

质数是p不可约

也就是素=质当且仅当在UFD里!!

不可约不一定是素数啊!

每一个单位整除每一个元素

u ∈ U − > u − 1 e x i s t    a = u ( u − 1 a ) u\in U->u^{-1} exist~~ a=u(u^{-1}a) uU>u1exist  a=u(u1a)

整环中,P是素的,那么P是不可约的。

只需P是可约的,那么P不是素数

p不是素数 ∃ a b , p ∣ a b & p ∤ a & p ∤ b \exist ab,p|ab \& p\not |a \& p\not | b ab,pab&pa&pb

反证法证逆否命题

wlog 不失一般性 假设p|a那么a=pc, c ∈ R c\in R cR

p = a b = ( p c ) b = p ( c b ) p=ab=(pc)b=p(cb) p=ab=(pc)b=p(cb)

c b = 1 , b ∈ U cb=1,b\in U cb=1,bU

任何一个整环中所有素元素都是不可约的!逆命题在UFD正确。

证明:

假设R是UFD

P ∈ R   { 0 } P\in R\ \{0\} PR { 0}

i f p ∣ a b p ∣ a o r p ∣ b if p|ab p|a or p|b ifpabpaorpb

pd=ab,d\in R,唯一分解之后

p w d 1 . . d r = u v a 1 . . a n b 1 . . b m pwd_1..d_r=uva_1..a_nb_1..b_m pwd1..dr=uva1..anb1..bm

其中uvw是单位

p就一定等于右边 a 1 . . a n a_1..a_n a1..an或者 b 1 . . b m b_1..b_m b1..bm中的一个,所以就整除右边a或者b了。

p   p i p i ∣ a , p ∣ a p~p_i p_i|a,p|a p pipia,pa

p = u p i , u ∈ U , p i d = a , d ∈ R p=up_i,u\in U,p_id=a,d\in R p=upi,uU,pid=a,dR

a = p i d = u − 1 p d = ( u − 1 d ) p , u − 1 d ∈ R a=p_id=u^{-1}pd=(u^{-1}d)p,u^{-1}d\in R a=pid=u1pd=(u1d)p,u1dR 那么 p ∣ a p|a pa

定理,如果R是一个整环,那么它是一个UFD当且仅当R+* UFD每一个不可约的都是素的,而且每一个元素都有分解

右显然,左每一个不可约都是素的。

只需要证每一个都是唯一的分解

让a\in R,让

a   p 1 . . p m a~p_1..p_m a p1..pm

a   q 1 . . q n a~q_1..q_n a q1..qn

因为每一个不可约的那些p,q都是素的,上面分解出来也是素的

左边整除右边右边整除左边就是等价。

左边取一个p_i都整除右边 q 1 . . q n q_1..q_n q1..qn

有因为他是prime,所以 p i ∣ q p_i|q piq中某一个!

因为两边差一个 p i p_i pi,右边也有一个 q σ i q_{\sigma i} qσi

都去掉,我们不断重复就有个数 m = n m=n m=n

*因为左右边都要能取完, m ≤ n , n ≤ m m\leq n,n\leq m mn,nm

于是他就是一个双射,所以是一个置换, p i = u q σ i p_i=uq_{\sigma i} pi=uqσi

gcd lcm PID->UFD->整环

佐恩引理来了!!

d = g c d ( a , b ) d=gcd(a,b) d=gcd(a,b)

  1. d ∣ a , d ∣ b d|a,d|b da,db

  2. if e ∣ a & e ∣ b t h e n e ∣ d e|a \& e|b then e|d ea&ebthened

gcd(a,b) 是唯一的

i f d = g c d ( a , b ) e = g c d ( a , b ) if d=gcd(a,b) e=gcd(a,b) ifd=gcd(a,b)e=gcd(a,b)

那么 d   e d~e d e

gcd unique在u意义下

因为 e ∣ d , d ∣ e , s o d   e e|d,d|e,so d~e eddesod e

lcm也是这样定义的!

R+*是整环 ,KaTeX parse error: Undefined control sequence: \lcm at position 3: m=\̲l̲c̲m̲(a,b)

a ∣ m & b ∣ m a|m \& b|m am&bm

i f a ∣ n , b ∣ n if a|n,b|n ifan,bn 那么 m ∣ n m|n mn

R+*是PID,那么对于任意 a , b ∈ R    ∃ d ∈ R    ( a ) + ( b ) = ( d )   < − >   d = g c d ( a , b ) a,b\in R~~\exist d\in R ~~(a)+(b)=(d)~<->~d=gcd(a,b) a,bR  dR  (a)+(b)=(d) <> d=gcd(a,b)

(a)\lhd I (b)\lhd I 想证明(a)+(b)\lhd I

(a)+(b)\not = R,因为PID则就是主理想

就有 d ∈ R ( d ) = ( a ) + ( b ) = { m a + n b , m , n ∈ R } d\in R (d)=(a)+(b)=\{ma+nb,m,n\in R\} dR(d)=(a)+(b)={ ma+nb,m,nR}

d = m a + n b m , n ∈ R d=ma+nb m,n\in R d=ma+nbm,nR

wts:

d ∣ a , d ∣ b d|a,d|b da,db

pf:

{ 0 } = 0 s u b s e t ( a ) \{0\}=0subset(a) { 0}=0subset(a)

( a ) ⊂ ( a ) + ( b ) = ( d ) (a)\subset(a)+(b)=(d) (a)(a)+(b)=(d)

所以 d ∣ a d|a da

也就是说只要

( a ) ⊂ ( d ) < − > d ∣ a (a)\subset (d)<->d|a (a)(d)<>da

所以d|b,然后如果e|a,e|b,那么 e ∣ d e|d ed

只需要用理想包含大力包含一下就好了。

( d ) = ( a ) + ( b ) ∈ ( e ) + ( e ) = ( e ) (d)=(a)+(b)\in (e)+(e)=(e) (d)=(a)+(b)(e)+(e)=(e)

e ∣ d e|d ed

如果(a)+(b)=R??

要证明 d = 1 , 1 ∣ a , 1 ∣ b d=1,1|a,1|b d=11∣a,1∣b

那么就不讲了,睡觉。

a Z + b Z = g c d ( a , b ) Z a\Z+b\Z=gcd(a,b)\Z aZ+bZ=gcd(a,b)Z

( a ) + ( b ) = ( g c d ( a , b ) ) = g c d ( a , b ) Z (a)+(b)=(gcd(a,b))=gcd(a,b) \Z (a)+(b)=(gcd(a,b))=gcd(a,b)Z

10 Z + 6 Z = { 10 m + 6 n : m , n ∈ Z } = { 2 n : n ∈ Z } 10\Z+6\Z=\{10m+6n:m,n\in Z\}=\{2n:n\in Z\} 10Z+6Z={ 10m+6n:m,nZ}={ 2n:nZ}

a Z + b Z = Z < − > g c d ( a , b ) = = 1 a\Z+b\Z=\Z<->gcd(a,b)==1 aZ+bZ=Z<>gcd(a,b)==1

∃ m , n ∈ Z \exist m,n\in Z m,nZ

a m + b n = 1 am+bn=1 am+bn=1

这就是抽象代数证明裴属定理。

if (R+*) 是PID, t h e n ∀ a , b ∈ R then \forall a,b\in R thena,bR

$
\exist m\in R,s.t (a)\cap (b)=(m)$

m = l c m ( a , b ) m=lcm (a,b) m=lcm(a,b)

倍数:

( m ) ∈ ( a ) ∩ b (m)\in (a)\cap b (m)(a)b

( m ) ⊂ ( a ) (m)\subset (a) (m)(a)

( m ) ⊂ ( b ) (m)\subset (b) (m)(b)

于是m|a,m|b
$
n|a,n|b,(n)\in (a),(n)\in (b)$

于是 n ∈ ( a ) ∩ ( b ) , n ∣ m n\in (a)\cap(b) ,n|m n(a)(b),nm

如果他们的交是R

那么他们两个理想互相包含, a ∣ b , b ∣ a a|b,b|a ab,ba 那么 a   b a~b a b

他们又都等价于1,所以他们都是单位,所以1是最小公倍数。

推论。。 a Z ∩ b Z = l c m ( a , b ) Z a\Z\cap b\Z=lcm(a,b)\Z aZbZ=lcm(a,b)Z

10 Z ∩ 6 Z = 10 m : m ∈ Z ∩ 6 n : n ∈ Z 10\Z\cap 6\Z={10m:m\in\Z}\cap{6n:n\in\Z} 10Z6Z=10m:mZ6n:nZ

推论

g c d ∗ l c m = a b gcd*lcm=ab gcdlcm=ab

如果除法可以定义

g c d ( a , b ) = a b l c m ( a , b ) gcd(a,b)=\frac{ab}{lcm(a,b)} gcd(a,b)=lcm(a,b)ab

a ∣ l c m ( a , b ) , b ∣ l c m ( a , b ) a|lcm(a,b),b|lcm(a,b) alcm(a,b),blcm(a,b)

a b ∣ b l c m ( a , b ) , a b ∣ a l c m ( a , b ) ab|blcm(a,b),ab|alcm(a,b) abblcm(a,b),abalcm(a,b)

a b ∣ g c d ( b l c m ( a , b ) , a l c m ( a , b ) ) ab|gcd(blcm(a,b),alcm(a,b)) abgcd(blcm(a,b),alcm(a,b))

b g c d ( a , b ) ∣ a b , a g c d ( a , b ) ∣ a b bgcd(a,b)|ab,agcd(a,b)|ab bgcd(a,b)ab,agcd(a,b)ab

− > l c m ( b g c d ( a , b ) , a g c d ( a , b ) ) ∣ a b ->lcm(bgcd(a,b),agcd(a,b))|ab >lcm(bgcd(a,b),agcd(a,b))ab

l c m ( a , b ) , g c d ( a , b ) lcm(a,b),gcd(a,b) lcm(a,b),gcd(a,b)

lcm(a,b)*gcd(a,b)~ab差一个unit

R+* PID p 不可约, p ∤ a p不可约,p\not | a p不可约,pa,那么gcd = 1

1 ∣ a & 1 ∣ p 1|a \& 1|p 1∣a&1∣p

d ∣ a & d ∣ p d|a \& d|p da&dp

那么 d ∣ 1 − > d   1 − > d ∈ U d|1->d~1->d\in U d∣1>d 1>dU

假设d不是一个U

d ∉ U d\not \in U dU

d ∣ p , p = d e , p d|p,p=de ,p dp,p=de,p不可约,而e必须要是一个单位

p   d p~d p d因为他们只差一个单位, d ∣ a − > p ∣ a d|a->p|a da>pa

前提, p ∤ a p\not |a pa

所以矛盾了

下面都是书上面都不是书。wocMaki牛牛牛。。。

Algebra SergeL P112

PID->UFD

每一个元素都有一个分解。。最难证。

  1. 每一个不可约元素都是素的

p ∣ a b − > p ∣ a o r p ∣ b p|ab -> p|a or p|b pab>pa

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值