cuda以及pytorch安装

安装CUDA显卡驱动

这篇博客已经超级详细,具体就不在闭门造车了!
最简单、实用的cuda安装教程!!!(nvidia官方渠道下载)

检测CUDA版本(cmd窗口命令行下)

nvidia-smi
nvcc -V
nvcc --version

一般为高版本兼容低版本,如果你的cuda为12.8,一般情况下下载11.2版本的cuda也能正常使用。

安装pytorch的方法

正常情况下载pytorch的官方网站pytorch.org中可选择对应最新版本安装。在这里插入图片描述

conda安装较低版本的torch

寻找到pytorch这个页面去寻找你需要的版本信息(我一般是control+F随后点击搜索按钮)
pytorch官方网站的previous版本
用linux和windows的命令行窗口运用pip或者conda安装。具体命令如图所示。(按照安装torch==2.0.0)

# CUDA 11.7
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.7 -c pytorch -c nvidia
# CUDA 11.8
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia
# CPU Only
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 cpuonly -c pytorch

用脚手架(wheel)安装torch==2.0.0,从中可以选择不同的版本进行安装.

# ROCM 5.4.2 (Linux only)
pip install torch==2.0.0+rocm5.4.2 torchvision==0.15.1+rocm5.4.2 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/rocm5.4.2
# CUDA 11.7
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
# CUDA 11.8
pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118
# CPU only
pip install torch==2.0.0+cpu torchvision==0.15.1+cpu torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cpu

镜像源安装(阿里云/腾讯云/清华镜像源安装)

清华镜像源的网址清华镜像源的pytorch镜像网址
将自己所需要的安装包最后确定网址。
网址具体如下所示。https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/(清华镜像源)
命令行如下所示(但是需要确定torch,torchvision的版本)

conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
# 阿里云安装torch=1.4.0,torchvision=0.5.0
pip install torch==1.4.0 torchvision==0.5.0 -f https://download.pytorch.org/whl/torch_stable.html -i http://mirrors.aliyun.com/pypi/simple/some-package

本地运用whl安装

进入对应的阿里云镜像阿里云镜像,随后搜索cu10/cu11(等对应的cuda版本)。在这里插入图片描述
随后直接下载torch以及torchvision之后即可。一定要下载这两个package(torch和torchvision)。
在这里插入图片描述
随后对应到对应的package下载的路径之后,点击命令行(cmd),随后再去下载的目录里面输入对应命令即可。

pip install "xxxxx.whl"

在这里插入图片描述

检验torch是否能够调用cuda

import torch
print(torch.__version__) # 检测torch版本(记得一般是cu+xx.x版本)
print(torch.version.cuda) # cuda的版本
print(torch.backends.cudnn.version())
flag = torch.cuda.is_available()
if flag:
    print("CUDA可使用")
else:
    print("CUDA不可用")

ngpu= 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print("驱动为:",device)
print("GPU型号: ",torch.cuda.get_device_name(0))

参考

pytorch:测试GPU是否可用
清华镜像源
pytorch官方网站

### 下载 CUDA 12.8 版本 对于希望下载特定版本的 CUDA 用户来说,选择合适的版本至关重要。当电脑支持 CUDA 的具体版本为 12.8.51 时,可以选择 CUDA Toolkit 12.8.0 进行下载[^1]。 #### 访问 NVIDIA 官方网站 前往[NVIDIA 开发者官网](https://developer.nvidia.com/cuda-toolkit-archive),该页面提供了多个历史版本的 CUDA 工具包供用户选择。 #### 查找并选择 CUDA 12.8.0 在网页中查找适用于操作系统的 CUDA 12.8.0 版本。通常会有一个下拉菜单允许选择不同的操作系统以及对应安装文件类型(例如 .run 或 .deb 文件针对 Linux 系统)。 #### 下载过程中的注意事项 确保网络连接稳定,在下载过程中不要中断下载以免造成文件损坏。如果使用的是较新版本的操作系统或开发环境(如 VSCode),需要注意可能存在兼容性问题,因此建议按照推荐版本进行设置,比如选用VS Code 1.85 来避免潜在的问题[^2]。 #### WSL 中安装 CUDA 如果是通过 Windows Subsystem for Linux (WSL) 使用 Linux 发行版,则需特别关注如何正确配置 CUDA 路径。执行相应命令来确认 cuda-toolkit 是否已成功安装及其路径是否正确设定,其中 `12-8` 应替换为实际使用的 CUDA 版本号[^3]。 ```bash which nvcc ``` #### Python 包管理工具 Conda 配置 为了使基于 Python 的项目能够顺利运行于指定版本的 CUDA 上,还需要调整 conda 和其他相关库(如 PyTorch、torchvision)至相匹配的版本,并预先安装必要的 Python 依赖项(像 numpy)。这一步骤可以通过查阅官方文档获取详细的指导信息[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值