Windows系统CUDA及PyTorch安装教程

CUDA安装

1. 系统和硬件要求检查

  • 硬件:确保你的计算机配备了NVIDIA GPU,并且该GPU支持CUDA。可以在NVIDIA官方网站的CUDA GPU支持列表中查看你的GPU是否兼容。
  • 操作系统:Windows系统版本需要满足CUDA版本的要求,一般较新的Windows 10或Windows 11系统都能较好支持。
  • 显卡驱动:安装最新的NVIDIA显卡驱动。可以通过NVIDIA官方驱动下载页面(Download The Official NVIDIA Drivers | NVIDIA ),根据你的GPU型号、操作系统等信息下载并安装最新的驱动程序。

2. 下载CUDA Toolkit

  • 访问NVIDIA官方CUDA Toolkit下载页面(根据电脑实际支持且兼容的CUDA版本,选择相应的CUDA版本,可以通过nvidia-smi.exe进行查看 ,这里建议安装11.8)。
    1. 12.8版本 CUDA Toolkit 12.8 Downloads | NVIDIA Developer
    2. 11.8版本 CUDA Toolkit 11.8 Downloads | NVIDIA Developer
  • 在页面中选择合适的版本和配置:
    • 操作系统:选择Windows。
    • 架构:根据你的系统选择,一般为x86_64。
    • 版本:选择适合你需求的Windows版本。
    • 安装类型:可以选择.exe(本地安装)或.msi(网络安装),本地安装包较大,但安装时无需联网;网络安装包较小,但安装过程中需要联网下载组件。
  • 点击“下载”按钮,等待下载完成。

3. 安装CUDA Toolkit

  • 双击下载好的安装程序,启动安装向导。
  • 在安装向导中,阅读并接受许可协议。
  • 选择安装选项,一般可以选择“自定义(高级)”安装,这样可以更灵活地选择要安装的组件。通常建议安装CUDA Toolkit、CUDA Samples等组件。
  • 选择安装路径,默认路径为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.X(XX.X为CUDA版本号),你也可以根据自己的需求修改。
  • 点击“安装”按钮,等待安装过程完成。安装过程可能需要一些时间,请耐心等待。

4. 配置环境变量

  • 安装完成后,需要配置系统环境变量,以便系统能够找到CUDA相关的库和工具。
  • 右键点击“此电脑”,选择“属性”。
  • 在左侧导航栏中点击“高级系统设置”。
  • 在弹出的“系统属性”窗口中,点击“环境变量”按钮。
  • 在“系统变量”中进行以下操作:
    • 找到“Path”变量,点击“编辑”。
    • 点击“新建”,添加以下两个路径(假设CUDA安装在默认路径):
      • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
      • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp
    • 点击“确定”保存更改。

5. 验证CUDA安装

  • 打开命令提示符或PowerShell窗口。
  • 输入以下命令,查看CUDA版本信息:
nvcc --version

如果安装成功,会显示CUDA的版本号。

  • 还可以编译并运行CUDA示例代码来进一步验证。示例代码位于CUDA安装目录下的Samples文件夹中。例如,编译并运行deviceQuery示例:
cd "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite"
deviceQuery.exe

如果一切正常,会输出GPU的相关信息。

注意事项

  • 在安装过程中,如果遇到问题,可以查看安装日志文件,日志文件一般位于%TEMP%目录下,以cuda_install_*.log命名。
  • 不同的CUDA版本可能对系统和硬件有不同的要求,在选择CUDA版本时需要注意兼容性。

PyTorch安装

要确定安装与 CUDA版本 兼容的 PyTorch 版本,可以通过 PyTorch 官方渠道来获取准确信息,通常较新的 PyTorch 版本都支持 CUDA 11.8 。以下为你详细介绍获取兼容版本及安装的方法:

官方网站查询

你可以访问 PyTorch 官方安装页面 ,在该页面进行如下操作:

  1. 在“Stable”下拉框中选择稳定版本(通常推荐使用稳定版)。
  2. 在“Your OS”下拉框中选择你的操作系统,如 Windows。
  3. 在“Package”下拉框中选择你习惯的包管理工具,如 pipconda
  4. 在“Language”下拉框中选择 Python。
  5. 在“Compute Platform”下拉框中选择 CUDA 11.8

完成上述选择后,页面会显示适用于 CUDA 11.8 的 PyTorch 安装命令,命令中包含了对应的 PyTorch 版本信息。例如,截至 2025 年 2 月,使用 pip 安装支持 CUDA 11.8 的 PyTorch 命令如下:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

这个命令会安装与 CUDA 11.8 兼容的最新稳定版 PyTorch 及其相关库。

如果你使用的是 conda 包管理工具,可以使用以下命令安装:

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

查看版本兼容性矩阵

你还可以查阅 PyTorch 官方的版本兼容性矩阵文档,以获取更详细的版本对应信息。不过这种方式相对复杂,对于大多数用户来说,通过上述官方安装页面获取信息更为便捷。

注意事项

  • 虚拟环境:如果你使用虚拟环境(如 venvconda 环境),确保在激活虚拟环境后再执行安装命令,以保证 PyTorch 安装到正确的环境中。
  • 依赖检查:安装 PyTorch 时,其依赖的 torchvisiontorchaudio 库也会一起安装,这些库的版本也需要与 PyTorch 和 CUDA 版本兼容,使用上述官方提供的安装命令可以确保这一点。

验证安装结果

安装完成并配置好环境变量后,可以再次运行以下代码来验证:

import torch

# 检查 CUDA 是否可用
if torch.cuda.is_available():
    print(f"CUDA 可用,版本: {torch.version.cuda}")
    print(f"当前使用的 GPU 设备: {torch.cuda.get_device_name(0)}")
else:
    print("CUDA 不可用")

### Anaconda、CUDAPyTorch 的 2025 年安装指南 随着技术的发展,到 2025 年,Anaconda、CUDAPyTorch安装流程可能会有所变化。以下是基于当前趋势和技术预测的安装指南。 #### 创建虚拟环境 为了隔离不同项目的依赖关系,在 Anaconda 中创建一个新的虚拟环境是一个良好的实践方法。通过以下命令可以完成这一操作: ```bash conda create -n pytorch_env_2025 python=3.9 ``` 此命令会创建名为 `pytorch_env_2025` 的新环境并指定 Python 版本为 3.9[^2]。 激活该虚拟环境可以通过如下命令实现: ```bash conda activate pytorch_env_2025 ``` #### 安装 CUDA 工具包 假设 NVIDIA 到 2025 年已经发布了支持最新 GPU 架构的新版本 CUDA,则需要下载对应的操作系统CUDA Toolkit。访问官方 NVIDIA CUDA 下载页面获取最新的稳定版工具包链接[^3]。 对于 Windows 用户来说,可能需要执行类似于下面这样的指令来安装特定版本的 CUDA(这里假定为 CUDA 13.x): ```bash choco install cuda-toolkit --version=13.x ``` 如果使用的是 Linux 或 macOS 系统,则应遵循相应的文档说明进行配置和编译选项设置。 #### 配置 PyTorch 安装源 考虑到清华大学开源镜像站在未来几年仍将继续提供稳定的软件分发服务,因此可以从其提供的 URL 地址中找到适合目标平台架构 (win-64, linux-64 etc.) 的预构建二进制文件列表[^1]: ```plaintext https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ ``` 根据实际需求选择合适的 PyTorch 软件包名称后,利用 pip 命令即可快速完成安装过程。例如针对具有 GPU 加速功能的支持 CUDA 13.x 的 PyTorch 发布版本可运行如下脚本片段: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu13x ``` 以上步骤综合考虑了截至至2025年可能出现的技术更新情况以及社区推荐的最佳做法。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值