CUDA安装
1. 系统和硬件要求检查
- 硬件:确保你的计算机配备了NVIDIA GPU,并且该GPU支持CUDA。可以在NVIDIA官方网站的CUDA GPU支持列表中查看你的GPU是否兼容。
- 操作系统:Windows系统版本需要满足CUDA版本的要求,一般较新的Windows 10或Windows 11系统都能较好支持。
- 显卡驱动:安装最新的NVIDIA显卡驱动。可以通过NVIDIA官方驱动下载页面(Download The Official NVIDIA Drivers | NVIDIA ),根据你的GPU型号、操作系统等信息下载并安装最新的驱动程序。
2. 下载CUDA Toolkit
- 访问NVIDIA官方CUDA Toolkit下载页面(根据电脑实际支持且兼容的CUDA版本,选择相应的CUDA版本,可以通过nvidia-smi.exe进行查看 ,这里建议安装11.8)。
- 在页面中选择合适的版本和配置:
- 操作系统:选择Windows。
- 架构:根据你的系统选择,一般为x86_64。
- 版本:选择适合你需求的Windows版本。
- 安装类型:可以选择.exe(本地安装)或.msi(网络安装),本地安装包较大,但安装时无需联网;网络安装包较小,但安装过程中需要联网下载组件。
- 点击“下载”按钮,等待下载完成。
3. 安装CUDA Toolkit
- 双击下载好的安装程序,启动安装向导。
- 在安装向导中,阅读并接受许可协议。
- 选择安装选项,一般可以选择“自定义(高级)”安装,这样可以更灵活地选择要安装的组件。通常建议安装CUDA Toolkit、CUDA Samples等组件。
- 选择安装路径,默认路径为
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.X
(XX.X为CUDA版本号),你也可以根据自己的需求修改。 - 点击“安装”按钮,等待安装过程完成。安装过程可能需要一些时间,请耐心等待。
4. 配置环境变量
- 安装完成后,需要配置系统环境变量,以便系统能够找到CUDA相关的库和工具。
- 右键点击“此电脑”,选择“属性”。
- 在左侧导航栏中点击“高级系统设置”。
- 在弹出的“系统属性”窗口中,点击“环境变量”按钮。
- 在“系统变量”中进行以下操作:
- 找到“Path”变量,点击“编辑”。
- 点击“新建”,添加以下两个路径(假设CUDA安装在默认路径):
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp
- 点击“确定”保存更改。
5. 验证CUDA安装
- 打开命令提示符或PowerShell窗口。
- 输入以下命令,查看CUDA版本信息:
nvcc --version
如果安装成功,会显示CUDA的版本号。
- 还可以编译并运行CUDA示例代码来进一步验证。示例代码位于CUDA安装目录下的
Samples
文件夹中。例如,编译并运行deviceQuery
示例:
cd "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite"
deviceQuery.exe
如果一切正常,会输出GPU的相关信息。
注意事项
- 在安装过程中,如果遇到问题,可以查看安装日志文件,日志文件一般位于
%TEMP%
目录下,以cuda_install_*.log
命名。 - 不同的CUDA版本可能对系统和硬件有不同的要求,在选择CUDA版本时需要注意兼容性。
PyTorch安装
要确定安装与 CUDA版本 兼容的 PyTorch 版本,可以通过 PyTorch 官方渠道来获取准确信息,通常较新的 PyTorch 版本都支持 CUDA 11.8 。以下为你详细介绍获取兼容版本及安装的方法:
官方网站查询
你可以访问 PyTorch 官方安装页面 ,在该页面进行如下操作:
- 在“Stable”下拉框中选择稳定版本(通常推荐使用稳定版)。
- 在“Your OS”下拉框中选择你的操作系统,如 Windows。
- 在“Package”下拉框中选择你习惯的包管理工具,如
pip
或conda
。 - 在“Language”下拉框中选择 Python。
- 在“Compute Platform”下拉框中选择
CUDA 11.8
。
完成上述选择后,页面会显示适用于 CUDA 11.8 的 PyTorch 安装命令,命令中包含了对应的 PyTorch 版本信息。例如,截至 2025 年 2 月,使用 pip
安装支持 CUDA 11.8 的 PyTorch 命令如下:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
这个命令会安装与 CUDA 11.8 兼容的最新稳定版 PyTorch 及其相关库。
如果你使用的是 conda
包管理工具,可以使用以下命令安装:
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
查看版本兼容性矩阵
你还可以查阅 PyTorch 官方的版本兼容性矩阵文档,以获取更详细的版本对应信息。不过这种方式相对复杂,对于大多数用户来说,通过上述官方安装页面获取信息更为便捷。
注意事项
- 虚拟环境:如果你使用虚拟环境(如
venv
或conda
环境),确保在激活虚拟环境后再执行安装命令,以保证 PyTorch 安装到正确的环境中。 - 依赖检查:安装 PyTorch 时,其依赖的
torchvision
和torchaudio
库也会一起安装,这些库的版本也需要与 PyTorch 和 CUDA 版本兼容,使用上述官方提供的安装命令可以确保这一点。
验证安装结果
安装完成并配置好环境变量后,可以再次运行以下代码来验证:
import torch
# 检查 CUDA 是否可用
if torch.cuda.is_available():
print(f"CUDA 可用,版本: {torch.version.cuda}")
print(f"当前使用的 GPU 设备: {torch.cuda.get_device_name(0)}")
else:
print("CUDA 不可用")