opencv的常用接口有那些

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它包含了许多常用的图像处理和分析功能。以下是一些OpenCV中常用的接口和功能:

  1. 图像读取与保存
    • cv2.imread(filename, flags=cv2.IMREAD_COLOR): 读取图像文件。
    • cv2.imwrite(filename, img): 保存图像到文件。
    • cv2.imshow(winname, mat): 在窗口中显示图像。
    • cv2.waitKey(delay=0): 等待键盘输入。
    • cv2.destroyAllWindows(): 关闭所有OpenCV窗口。
  2. 图像基本操作
    • cv2.resize(src, dsize, interpolation=cv2.INTER_LINEAR): 调整图像大小。
    • cv2.cvtColor(src, code, dst=None, dstCn=None): 图像颜色空间转换,如BGR到灰度图(cv2.COLOR_BGR2GRAY)。
    • cv2.flip(src, flipCode=0): 翻转图像,水平或垂直。
    • cv2.rotate(src, rotateCode): 旋转图像90度,180度,270度等。
  3. 图像滤波与增强
    • cv2.blur(src, ksize, dst=None, anchor=None, borderType=None): 均值滤波。
    • cv2.GaussianBlur(src, ksize, sigmaX, dst=None, sigmaY=0, borderType=cv2.BORDER_DEFAULT): 高斯滤波。
    • cv2.medianBlur(src, ksize): 中值滤波。
    • cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace, dst=None, borderType=cv2.BORDER_DEFAULT): 双边滤波。
    • cv2.equalizeHist(src, dst=None): 直方图均衡化。
  4. 特征检测与描述
    • cv2.Canny(image, threshold1, threshold2, edges=None, apertureSize=3, L2gradient=False): Canny边缘检测。
    • cv2.findContours(image, mode, method[, contours[, hierarchy[, offset]]]): 查找轮廓。
    • cv2.HoughLines(image, rho, theta, threshold[, lines[, srn[, stn[, min_theta[, max_theta]]]]]):霍夫线变换。
    • cv2.HoughLinesP(image, rho, theta, threshold[, lines[, minLineLength[, maxLineGap]]]): 霍夫线变换的概率版本。
    • SIFT, SURF, ORB等特征检测和描述符算法。
  5. 图像变换
    • cv2.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]): 仿射变换。
    • cv2.warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]): 透视变换。
    • cv2.getPerspectiveTransform(src, dst): 计算透视变换矩阵。
    • cv2.getAffineTransform(src, dst): 计算仿射变换矩阵。
  6. 视频处理
    • cv2.VideoCapture(filename): 打开视频文件或摄像头。
    • cap.read(): 读取视频的下一帧。
    • cv2.VideoWriter(filename, fourcc, fps, frameSize[, isColor]): 创建视频写入对象。
    • out.write(frame): 将帧写入视频文件。
  7. 相机标定与3D重建
    • 相机标定函数,如cv2.calibrateCamera()
    • 3D点重建函数,如cv2.triangulatePoints()
  8. 其他功能
    • 图像处理与分析的各种函数,如形态学操作、轮廓分析、直方图比较等。
    • 机器学习模块,包含SVM、KNN、决策树等分类器。
    • 面部和对象识别功能,如Haar级联分类器和LBP级联分类器。
    • 光流法、背景减除、运动估计等视频分析功能。

这只是OpenCV功能的一个概览,实际上OpenCV提供了非常丰富的接口和算法,可以满足各种计算机视觉任务的需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值