八皇后问题算法解析

八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。
该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,
即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
计算机发明后,有多种计算机语言可以解决此问题。

如下用c++代码实现:
算法说明:
结构:用一个一维数组表示8皇后排放的位置。(如下图)
八皇后问题算法解析
算法说明:
现尝试再第一列的任意位数放皇后,然后在尝试在第二列的任意位置放皇后,依次迭代。
迭代到第8行,如果有成功的就将摆法数加1。
一维数组的复制组合全部实验过后,程序结束。
回溯点:
1.
gCount++, print();
gEightQueen[index] = 0;
2.
eight_queen(index + 1);
gEightQueen[index] = 0;

上面的说明希望有利于您的理解,哦,在加一句总结。
回溯法的关键就是设计一个可回溯的数据结构,这是关键,就像该问题的一维数组(gEightQueen[8] )一样。

#include<iostream>
using namespace std;
static int gEightQueen[8] = { 0 }, gCount = 0;
void print()//输出每一种情况下棋盘中皇后的摆放情况
{
    for (int i = 0; i < 8; i++)
    {   
        int inner;
        for (inner = 0; inner < gEightQueen[i]; inner++)
            cout << "0";
            cout <<"#";
        for (inner = gEightQueen[i] + 1; inner < 8; inner++)
            cout << "0";
        cout << endl;
    }
    cout << "==========================\n";
}
int check_pos_valid(int loop, int value)//检查是否存在有多个皇后在同一行/列/对角线的情况
{
    int index;
    int data;
    for (index = 0; index < loop; index++)
    {
        data = gEightQueen[index];
        if (value == data)
            return 0;
        if ((index + data) == (loop + value))
            return 0;
        if ((index - data) == (loop - value))
            return 0;
    }
    return 1;
}
void eight_queen(int index)
{
    int loop;
    for (loop = 0; loop < 8; loop++)
    {
        if (check_pos_valid(index, loop))
        {
            gEightQueen[index] = loop;
            if (7 == index)
            {
                gCount++, print();
                gEightQueen[index] = 0;
                return;
            }
            eight_queen(index + 1);
            gEightQueen[index] = 0;
        }
    }
}
int main(int argc, char*argv[])
{
    eight_queen(0);
    cout << "total=" << gCount << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值