padas使用pviot展示数据及其替代方案

该博客展示了如何利用Pandas库对数据进行分组统计,并通过pivot函数转换数据格式。内容包括对'user'和'item'列的分组,计算'num'列的总和,然后选取每个用户购买量前三的商品。提供的代码实现了一个名为third_item的函数,用于获取每个用户最常购买的前三项商品及其数量。
摘要由CSDN通过智能技术生成
df = pd.DataFrame({'user': ['a', 'a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'c', 'c'],
             'item': ['10001', '10002', '10001', '10002', '10003', '10004', '10001', '10002', '10002', '10003', '10005', '10005'],
                'num': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]})

在这里插入图片描述

# statistics
df_stat = df.groupby(['user', 'item'])['num'].sum().reset_index()

在这里插入图片描述

# pivot
df_stat.pivot(index='user', columns='item', values='num')

在这里插入图片描述

# 如果列很多就不好看,我们就可以选择看前三多的item即可
def third_item(part_data):
    third_kill_map = part_data.sort_values(['num'], ascending=False)[:3]
    d_third_kill_map = {key: value for key, value in third_kill_map[['item', 'num']].values}
    return d_third_kill_map
    
df_stat.groupby(['user']).apply(third_item).reset_index()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值