哈夫曼树(一)之 C语言详解

出自:http://www.cnblogs.com/skywang12345/p/3706370.html

本章介绍哈夫曼树。和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现。后续再分别给出C++和Java版本的实现;实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可。若文章有错误或不足的地方,请帮忙指出!

目录

1哈夫曼树的介绍 
2哈夫曼树的图文解析 
3哈夫曼树的基本操作 
4哈夫曼树的完整源码


转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

哈夫曼树的介绍

Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树。

定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树。 这个定义里面涉及到了几个陌生的概念,下面就是一颗哈夫曼树,我们来看图解答。

(01) 路径和路径长度

定义:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。 
例子:100和80的路径长度是1,50和30的路径长度是2,20和10的路径长度是3。

(02) 结点的权及带权路径长度

定义:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。 
例子:节点20的路径长度是3,它的带权路径长度= 路径长度 * 权 = 3 * 20 = 60。

(03) 树的带权路径长度

定义:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。 
例子:示例中,树的WPL= 1*100 + 2*80 + 3*20 + 3*10 = 100 + 160 + 60 + 30 = 350。


比较下面两棵树

上面的两棵树都是以{10, 20, 50, 100}为叶子节点的树。

左边的树WPL=2*10 + 2*20 + 2*50 + 2*100 = 360 
右边的树WPL=350

左边的树WPL > 右边的树的WPL。你也可以计算除上面两种示例之外的情况,但实际上右边的树就是{10,20,50,100}对应的哈夫曼树。至此,应该堆哈夫曼树的概念有了一定的了解了,下面看看如何去构造一棵哈夫曼树。

哈夫曼树的图文解析

假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,哈夫曼树的构造规则为:

1. 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点); 
2. 在森林中选出根结点的权值最小的两棵树进行合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和; 
3. 从森林中删除选取的两棵树,并将新树加入森林; 
4. 重复(02)、(03)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。


以{5,6,7,8,15}为例,来构造一棵哈夫曼树。

第1步:创建森林,森林包括5棵树,这5棵树的权值分别是5,6,7,8,15。 
第2步:在森林中,选择根节点权值最小的两棵树(5和6)来进行合并,将它们作为一颗新树的左右孩子(谁左谁右无关紧要,这里,我们选择较小的作为左孩子),并且新树的权值是左右孩子的权值之和。即,新树的权值是11。 然后,将"树5"和"树6"从森林中删除,并将新的树(树11)添加到森林中。 
第3步:在森林中,选择根节点权值最小的两棵树(7和8)来进行合并。得到的新树的权值是15。 然后,将"树7"和"树8"从森林中删除,并将新的树(树15)添加到森林中。 
第4步:在森林中,选择根节点权值最小的两棵树(11和15)来进行合并。得到的新树的权值是26。 然后,将"树11"和"树15"从森林中删除,并将新的树(树26)添加到森林中。 
第5步:在森林中,选择根节点权值最小的两棵树(15和26)来进行合并。得到的新树的权值是41。 然后,将"树15"和"树26"从森林中删除,并将新的树(树41)添加到森林中。 
此时,森林中只有一棵树(树41)。这棵树就是我们需要的哈夫曼树!

哈夫曼树的基本操作

哈夫曼树的重点是如何构造哈夫曼树。本文构造哈夫曼时,用到了以前介绍过的"(二叉堆)最小堆"。下面对哈夫曼树进行讲解。

1. 基本定义

复制代码
typedef int Type;

typedef struct _HuffmanNode {
    Type key;                     // 权值
    struct _HuffmanNode *left;    // 左孩子
    struct _HuffmanNode *right;   // 右孩子
    struct _HuffmanNode *parent;  // 父节点
} HuffmanNode, *HuffmanTree;
复制代码

HuffmanNode是哈夫曼树的节点类。

2. 构造哈夫曼树

复制代码
/*
 * 创建Huffman树
 *
 * 参数说明:
 *     a 权值数组
 *     size 数组大小
 *
 * 返回值:
 *     Huffman树的根
 */
HuffmanNode* create_huffman(Type a[], int size)
{
    int i;
    HuffmanNode *left, *right, *parent;

    // 建立数组a对应的最小堆
    create_minheap(a, size);

    for(i=0; i<size-1; i++)
    {   
        left = dump_from_minheap();  // 最小节点是左孩子
        right = dump_from_minheap(); // 其次才是右孩子

        // 新建parent节点,左右孩子分别是left/right;
        // parent的大小是左右孩子之和
        parent = huffman_create_node(left->key+right->key, left, right, NULL);
        left->parent = parent;
        right->parent = parent;


        // 将parent节点数据拷贝到"最小堆"中
        if (dump_to_minheap(parent)!=0)
        {
            printf("插入失败!\n结束程序\n");
            destroy_huffman(parent);
            parent = NULL;
            break;
        }
    }   

    // 销毁最小堆
    destroy_minheap();

    return parent;
}
复制代码

首先通过create_huffman(a, size)来一个最小堆。最小堆构造完成之后,进入for循环。

每次循环时:

(01) 首先,将最小堆中的最小节点拷贝一份并赋值给left,然后重塑最小堆(将最小节点和后面的节点交换位置,接着将"交换位置后的最小节点"之前的全部元素重新构造成最小堆); 
(02) 接着,再将最小堆中的最小节点拷贝一份并将其赋值right,然后再次重塑最小堆; 
(03) 然后,新建节点parent,并将它作为left和right的父节点; 
(04) 接着,将parent的数据复制给最小堆中的指定节点。

二叉堆中已经介绍过堆,这里就不再对堆的代码进行说明了。若有疑问,直接参考后文的源码。其它的相关代码,也Please RTFSC(Read The Fucking Source Code)!

哈夫曼树的完整源码

哈夫曼树的源码共包括4个文件。

1哈夫曼树的头文件(huffman.h)

2哈夫曼树的实现文件(huffman.c)

3哈夫曼树对应的最小堆(minheap.c)

4哈夫曼树的测试程序(huffman_test.c)

 
 
#ifndef _AVL_TREE_H_
#define _AVL_TREE_H_

typedef int Type ;

typedef struct _HuffmanNode {
Type key ; // 权值
struct _HuffmanNode * left ; // 左孩子
struct _HuffmanNode * right ; // 右孩子
struct _HuffmanNode * parent ; // 父节点
} HuffmanNode , * HuffmanTree ;

// 前序遍历"Huffman树"
void preorder_huffman ( HuffmanTree tree );
// 中序遍历"Huffman树"
void inorder_huffman ( HuffmanTree tree );
// 后序遍历"Huffman树"
void postorder_huffman ( HuffmanTree tree );

// 创建Huffman树
HuffmanNode * create_huffman ( Type arr [], int size );

// 销毁Huffman树
void destroy_huffman ( HuffmanTree tree );

// 打印Huffman树
void print_huffman ( HuffmanTree tree );

#endif

 
 
/**
* Huffman树(C语言): C语言实现的Huffman树。
*
* 构造Huffman树时,使用到了最小堆。
*
* @author skywang
* @date 2014/03/25
*/

#include <stdio.h>
#include <stdlib.h>
#include "huffman.h"

// 创建最小堆
extern void create_minheap ( Type a [], int size );
// 新建一个节点,并将最小堆中最小节点的数据复制给该节点。
extern HuffmanNode * dump_from_minheap ();
// 将data插入到二叉堆中。0表示成功,-1表示失败。
extern int dump_to_minheap ( HuffmanNode * node );
// 销毁最小堆
extern void destroy_minheap ();

/*
* 前序遍历"Huffman树"
*/
void preorder_huffman ( HuffmanTree tree )
{
     if ( tree != NULL )
     {
         printf ( "%d " , tree -> key );
         preorder_huffman ( tree -> left );
         preorder_huffman ( tree -> right );
     }
}


/*
* 中序遍历"Huffman树"
*/
void inorder_huffman ( HuffmanTree tree )
{
     if ( tree != NULL )
     {
         inorder_huffman ( tree -> left );
         printf ( "%d " , tree -> key );
         inorder_huffman ( tree -> right );
     }
}

/*
* 后序遍历"Huffman树"
*/
void postorder_huffman ( HuffmanTree tree )
{
     if ( tree != NULL )
     {
         postorder_huffman ( tree -> left );
         postorder_huffman ( tree -> right );
         printf ( "%d " , tree -> key );
     }
}

/*
* 创建Huffman树结点。
*
* 参数说明:
* key 是键值。
* left 是左孩子。
* right 是右孩子。
* parent 是父节点
*/
HuffmanNode * huffman_create_node ( Type key , HuffmanNode * left , HuffmanNode * right , HuffmanNode * parent )
{
     HuffmanNode * p ;

     if (( p = ( HuffmanNode * ) malloc ( sizeof ( HuffmanNode ))) == NULL )
         return NULL ;
     p -> key = key ;
     p -> left = left ;
     p -> right = right ;
     p -> parent = parent ;

     return p ;
}

/*
* 创建Huffman树
*
* 参数说明:
* a 权值数组
* size 数组大小
*
* 返回值:
* Huffman树的根
*/
HuffmanNode * create_huffman ( Type a [], int size )
{
     int i ;
     HuffmanNode * left , * right , * parent ;

// 建立数组a对应的最小堆
     create_minheap ( a , size );
 
     for ( i = 0 ; i < size - 1 ; i ++ )
     {
         left = dump_from_minheap (); // 最小节点是左孩子
         right = dump_from_minheap (); // 其次才是右孩子
 
// 新建parent节点,左右孩子分别是left/right;
// parent的大小是左右孩子之和
         parent = huffman_create_node ( left -> key + right -> key , left , right , NULL );
         left -> parent = parent ;
right -> parent = parent ;
 

// 将parent节点数据拷贝到"最小堆"中
if ( dump_to_minheap ( parent ) != 0 )
{
printf ( "插入失败! \n 结束程序 \n " );
destroy_huffman ( parent );
parent = NULL ;
break ;
}
     }

// 销毁最小堆
destroy_minheap ();

return parent ;
}

/*
* 销毁Huffman树
*/
void destroy_huffman ( HuffmanTree tree )
{
     if ( tree == NULL )
         return ;

     if ( tree -> left != NULL )
         destroy_huffman ( tree -> left );
     if ( tree -> right != NULL )
         destroy_huffman ( tree -> right );

     free ( tree );
}

/*
* 打印"Huffman树"
*
* tree -- Huffman树的节点
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
void huffman_print ( HuffmanTree tree , Type key , int direction )
{
     if ( tree != NULL )
     {
         if ( direction == 0 ) // tree是根节点
             printf ( "%2d is root \n " , tree -> key , key );
         else // tree是分支节点
             printf ( "%2d is %2d's %6s child \n " , tree -> key , key , direction == 1 ? "right" : "left" );

         huffman_print ( tree -> left , tree -> key , - 1 );
         huffman_print ( tree -> right , tree -> key , 1 );
     }
}

void print_huffman ( HuffmanTree tree )
{
if ( tree != NULL )
huffman_print ( tree , tree -> key , 0 );
}

 
 
/**
* 最小堆:为Huffman树服务的。
*
* @author skywang
* @date 2014/03/25
*/

#include <stdio.h>
#include <stdlib.h>
#include "huffman.h"

static HuffmanNode * m_heap ; // 最小堆的数组
static int m_capacity ; // 总的容量
static int m_size ; // 当前有效数据的数量
 
/*
* 最小堆的向下调整算法
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
* end -- 截至范围(一般为数组中最后一个元素的索引)
*/
static void minheap_filterdown ( int start , int end )
{
     int c = start ; // 当前(current)节点的位置
     int l = 2 * c + 1 ; // 左(left)孩子的位置
     HuffmanNode tmp = m_heap [ c ]; // 当前(current)节点

     while ( l <= end )
     {
// "l"是左孩子,"l+1"是右孩子
         if ( l < end && m_heap [ l ]. key > m_heap [ l + 1 ]. key )
             l ++ ; // 左右两孩子中选择较小者,即m_heap[l+1]
         if ( tmp . key <= m_heap [ l ]. key )
             break ; //调整结束
         else
         {
             m_heap [ c ] = m_heap [ l ];
             c = l ;
             l = 2 * l + 1 ;
         }
     }
     m_heap [ c ] = tmp ;
}
 
/*
* 最小堆的向上调整算法(从start开始向上直到0,调整堆)
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
*/
static void filter_up ( int start )
{
     int c = start ; // 当前节点(current)的位置
     int p = ( c - 1 ) / 2 ; // 父(parent)结点的位置
     HuffmanNode tmp = m_heap [ c ]; // 当前节点(current)

     while ( c > 0 )
     {
         if ( m_heap [ p ]. key <= tmp . key )
             break ;
         else
         {
             m_heap [ c ] = m_heap [ p ];
             c = p ;
             p = ( p - 1 ) / 2 ;
         }
     }
     m_heap [ c ] = tmp ;
}
  
/*
* 将node插入到二叉堆中
*
* 返回值:
* 0,表示成功
* -1,表示失败
*/
int dump_to_minheap ( HuffmanNode * node )
{
     // 如果"堆"已满,则返回
     if ( m_size == m_capacity )
         return - 1 ;
 
     m_heap [ m_size ] = * node ; // 将"node的数据"全部复制到"数组末尾"
     filter_up ( m_size ); // 向上调整堆
     m_size ++ ; // 堆的实际容量+1

     return 0 ;
}

/*
* 交换两个HuffmanNode节点的全部数据
*/
static void swap_node ( int i , int j )
{
HuffmanNode tmp = m_heap [ i ];
m_heap [ i ] = m_heap [ j ];
m_heap [ j ] = tmp ;
}

/*
* 新建一个节点,并将最小堆中最小节点的数据复制给该节点。
* 然后除最小节点之外的数据重新构造成最小堆。
*
* 返回值:
* 失败返回NULL。
*/
HuffmanNode * dump_from_minheap ()
{
     // 如果"堆"已空,则返回
     if ( m_size == 0 )
return NULL ;

HuffmanNode * node ;
     if (( node = ( HuffmanNode * ) malloc ( sizeof ( HuffmanNode ))) == NULL )
return NULL ;

// 将"最小节点的全部数据"复制给node
* node = m_heap [ 0 ];

swap_node ( 0 , m_size - 1 ); // 交换"最小节点"和"最后一个节点"
     minheap_filterdown ( 0 , m_size - 2 ); // 将m_heap[0...m_size-2]构造成一个最小堆
m_size -- ;

return node ;
}

/*
* 打印二叉堆
*
* 返回值:
* 0,表示成功
* -1,表示失败
*/
void minheap_print ()
{
int i ;
for ( i = 0 ; i < m_size ; i ++ )
printf ( "%d " , m_heap [ i ]. key );
}

/*
* 创建最小堆
*
* 参数说明:
* a -- 数据所在的数组
* size -- 数组大小
*/
void create_minheap ( Type a [], int size )
{
int i ;

// 创建最小堆所对应的数组
m_size = size ;
m_capacity = size ;
m_heap = ( HuffmanNode * ) malloc ( sizeof ( HuffmanNode ) * size );

// 初始化数组
     for ( i = 0 ; i < size ; i ++ )
{
m_heap [ i ]. key = a [ i ];
m_heap [ i ]. parent = m_heap [ i ]. left = m_heap [ i ]. right = NULL ;
}

     // 从(size/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个最小堆。
     for ( i = size / 2 - 1 ; i >= 0 ; i -- )
minheap_filterdown ( i , size - 1 );
}

// 销毁最小堆
void destroy_minheap ()
{
m_size = 0 ;
m_capacity = 0 ;
free ( m_heap );
}

 
 
/**
* C 语言: Huffman树
*
* @author skywang
* @date 2014/03/25
*/
#include <stdio.h>
#include "huffman.h"

#define LENGTH(a) ( (sizeof(a)) / (sizeof(a[0])) )

void main ()
{
int a [] = { 5 , 6 , 8 , 7 , 15 };
int i , ilen = LENGTH ( a );
HuffmanTree root = NULL ;

printf ( "== 添加数组: " );
for ( i = 0 ; i < ilen ; i ++ )
printf ( "%d " , a [ i ]);

// 创建数组a对应的Huffman树
root = create_huffman ( a , ilen );

printf ( " \n == 前序遍历: " );
preorder_huffman ( root );

printf ( " \n == 中序遍历: " );
inorder_huffman ( root );

printf ( " \n == 后序遍历: " );
postorder_huffman ( root );
printf ( " \n " );

printf ( "== 树的详细信息: \n " );
print_huffman ( root );

// 销毁二叉树
destroy_huffman ( root );
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值