出自:http://www.cnblogs.com/skywang12345/p/3706370.html
本章介绍哈夫曼树。和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现。后续再分别给出C++和Java版本的实现;实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可。若文章有错误或不足的地方,请帮忙指出!
目录
1. 哈夫曼树的介绍
2. 哈夫曼树的图文解析
3. 哈夫曼树的基本操作
4. 哈夫曼树的完整源码
转载请注明出处:http://www.cnblogs.com/skywang12345/
更多内容:数据结构与算法系列 目录
哈夫曼树的介绍
Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树。
定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树。 这个定义里面涉及到了几个陌生的概念,下面就是一颗哈夫曼树,我们来看图解答。
(01) 路径和路径长度
定义:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
例子:100和80的路径长度是1,50和30的路径长度是2,20和10的路径长度是3。
(02) 结点的权及带权路径长度
定义:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
例子:节点20的路径长度是3,它的带权路径长度= 路径长度 * 权 = 3 * 20 = 60。
(03) 树的带权路径长度
定义:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。
例子:示例中,树的WPL= 1*100 + 2*80 + 3*20 + 3*10 = 100 + 160 + 60 + 30 = 350。
比较下面两棵树
上面的两棵树都是以{10, 20, 50, 100}为叶子节点的树。
左边的树WPL=2*10 + 2*20 + 2*50 + 2*100 = 360
右边的树WPL=350
左边的树WPL > 右边的树的WPL。你也可以计算除上面两种示例之外的情况,但实际上右边的树就是{10,20,50,100}对应的哈夫曼树。至此,应该堆哈夫曼树的概念有了一定的了解了,下面看看如何去构造一棵哈夫曼树。
哈夫曼树的图文解析
假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,哈夫曼树的构造规则为:
1. 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);
2. 在森林中选出根结点的权值最小的两棵树进行合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;
3. 从森林中删除选取的两棵树,并将新树加入森林;
4. 重复(02)、(03)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。
以{5,6,7,8,15}为例,来构造一棵哈夫曼树。
第1步:创建森林,森林包括5棵树,这5棵树的权值分别是5,6,7,8,15。
第2步:在森林中,选择根节点权值最小的两棵树(5和6)来进行合并,将它们作为一颗新树的左右孩子(谁左谁右无关紧要,这里,我们选择较小的作为左孩子),并且新树的权值是左右孩子的权值之和。即,新树的权值是11。 然后,将"树5"和"树6"从森林中删除,并将新的树(树11)添加到森林中。
第3步:在森林中,选择根节点权值最小的两棵树(7和8)来进行合并。得到的新树的权值是15。 然后,将"树7"和"树8"从森林中删除,并将新的树(树15)添加到森林中。
第4步:在森林中,选择根节点权值最小的两棵树(11和15)来进行合并。得到的新树的权值是26。 然后,将"树11"和"树15"从森林中删除,并将新的树(树26)添加到森林中。
第5步:在森林中,选择根节点权值最小的两棵树(15和26)来进行合并。得到的新树的权值是41。 然后,将"树15"和"树26"从森林中删除,并将新的树(树41)添加到森林中。
此时,森林中只有一棵树(树41)。这棵树就是我们需要的哈夫曼树!
哈夫曼树的基本操作
哈夫曼树的重点是如何构造哈夫曼树。本文构造哈夫曼时,用到了以前介绍过的"(二叉堆)最小堆"。下面对哈夫曼树进行讲解。
1. 基本定义
typedef int Type;
typedef struct _HuffmanNode {
Type key; // 权值
struct _HuffmanNode *left; // 左孩子
struct _HuffmanNode *right; // 右孩子
struct _HuffmanNode *parent; // 父节点
} HuffmanNode, *HuffmanTree;
HuffmanNode是哈夫曼树的节点类。
2. 构造哈夫曼树
/*
* 创建Huffman树
*
* 参数说明:
* a 权值数组
* size 数组大小
*
* 返回值:
* Huffman树的根
*/
HuffmanNode* create_huffman(Type a[], int size)
{
int i;
HuffmanNode *left, *right, *parent;
// 建立数组a对应的最小堆
create_minheap(a, size);
for(i=0; i<size-1; i++)
{
left = dump_from_minheap(); // 最小节点是左孩子
right = dump_from_minheap(); // 其次才是右孩子
// 新建parent节点,左右孩子分别是left/right;
// parent的大小是左右孩子之和
parent = huffman_create_node(left->key+right->key, left, right, NULL);
left->parent = parent;
right->parent = parent;
// 将parent节点数据拷贝到"最小堆"中
if (dump_to_minheap(parent)!=0)
{
printf("插入失败!\n结束程序\n");
destroy_huffman(parent);
parent = NULL;
break;
}
}
// 销毁最小堆
destroy_minheap();
return parent;
}
首先通过create_huffman(a, size)来一个最小堆。最小堆构造完成之后,进入for循环。
每次循环时:
(01) 首先,将最小堆中的最小节点拷贝一份并赋值给left,然后重塑最小堆(将最小节点和后面的节点交换位置,接着将"交换位置后的最小节点"之前的全部元素重新构造成最小堆);
(02) 接着,再将最小堆中的最小节点拷贝一份并将其赋值right,然后再次重塑最小堆;
(03) 然后,新建节点parent,并将它作为left和right的父节点;
(04) 接着,将parent的数据复制给最小堆中的指定节点。
在二叉堆中已经介绍过堆,这里就不再对堆的代码进行说明了。若有疑问,直接参考后文的源码。其它的相关代码,也Please RTFSC(Read The Fucking Source Code)!
哈夫曼树的完整源码
哈夫曼树的源码共包括4个文件。
#ifndef _AVL_TREE_H_#define _AVL_TREE_H_
typedef int Type ;
typedef struct _HuffmanNode {Type key ; // 权值struct _HuffmanNode * left ; // 左孩子struct _HuffmanNode * right ; // 右孩子struct _HuffmanNode * parent ; // 父节点} HuffmanNode , * HuffmanTree ;
// 前序遍历"Huffman树"void preorder_huffman ( HuffmanTree tree );// 中序遍历"Huffman树"void inorder_huffman ( HuffmanTree tree );// 后序遍历"Huffman树"void postorder_huffman ( HuffmanTree tree );
// 创建Huffman树HuffmanNode * create_huffman ( Type arr [], int size );
// 销毁Huffman树void destroy_huffman ( HuffmanTree tree );
// 打印Huffman树void print_huffman ( HuffmanTree tree );
#endif
/*** Huffman树(C语言): C语言实现的Huffman树。** 构造Huffman树时,使用到了最小堆。** @author skywang* @date 2014/03/25*/
#include <stdio.h>#include <stdlib.h>#include "huffman.h"
// 创建最小堆extern void create_minheap ( Type a [], int size );// 新建一个节点,并将最小堆中最小节点的数据复制给该节点。extern HuffmanNode * dump_from_minheap ();// 将data插入到二叉堆中。0表示成功,-1表示失败。extern int dump_to_minheap ( HuffmanNode * node );// 销毁最小堆extern void destroy_minheap ();
/** 前序遍历"Huffman树"*/void preorder_huffman ( HuffmanTree tree ){if ( tree != NULL ){printf ( "%d " , tree -> key );preorder_huffman ( tree -> left );preorder_huffman ( tree -> right );}}
/** 中序遍历"Huffman树"*/void inorder_huffman ( HuffmanTree tree ){if ( tree != NULL ){inorder_huffman ( tree -> left );printf ( "%d " , tree -> key );inorder_huffman ( tree -> right );}}
/** 后序遍历"Huffman树"*/void postorder_huffman ( HuffmanTree tree ){if ( tree != NULL ){postorder_huffman ( tree -> left );postorder_huffman ( tree -> right );printf ( "%d " , tree -> key );}}
/** 创建Huffman树结点。** 参数说明:* key 是键值。* left 是左孩子。* right 是右孩子。* parent 是父节点*/HuffmanNode * huffman_create_node ( Type key , HuffmanNode * left , HuffmanNode * right , HuffmanNode * parent ){HuffmanNode * p ;
if (( p = ( HuffmanNode * ) malloc ( sizeof ( HuffmanNode ))) == NULL )return NULL ;p -> key = key ;p -> left = left ;p -> right = right ;p -> parent = parent ;
return p ;}
/** 创建Huffman树** 参数说明:* a 权值数组* size 数组大小** 返回值:* Huffman树的根*/HuffmanNode * create_huffman ( Type a [], int size ){int i ;HuffmanNode * left , * right , * parent ;
// 建立数组a对应的最小堆create_minheap ( a , size );for ( i = 0 ; i < size - 1 ; i ++ ){left = dump_from_minheap (); // 最小节点是左孩子right = dump_from_minheap (); // 其次才是右孩子// 新建parent节点,左右孩子分别是left/right;// parent的大小是左右孩子之和parent = huffman_create_node ( left -> key + right -> key , left , right , NULL );left -> parent = parent ;right -> parent = parent ;
// 将parent节点数据拷贝到"最小堆"中if ( dump_to_minheap ( parent ) != 0 ){printf ( "插入失败! \n 结束程序 \n " );destroy_huffman ( parent );parent = NULL ;break ;}}
// 销毁最小堆destroy_minheap ();
return parent ;}
/** 销毁Huffman树*/void destroy_huffman ( HuffmanTree tree ){if ( tree == NULL )return ;
if ( tree -> left != NULL )destroy_huffman ( tree -> left );if ( tree -> right != NULL )destroy_huffman ( tree -> right );
free ( tree );}
/** 打印"Huffman树"** tree -- Huffman树的节点* key -- 节点的键值* direction -- 0,表示该节点是根节点;* -1,表示该节点是它的父结点的左孩子;* 1,表示该节点是它的父结点的右孩子。*/void huffman_print ( HuffmanTree tree , Type key , int direction ){if ( tree != NULL ){if ( direction == 0 ) // tree是根节点printf ( "%2d is root \n " , tree -> key , key );else // tree是分支节点printf ( "%2d is %2d's %6s child \n " , tree -> key , key , direction == 1 ? "right" : "left" );
huffman_print ( tree -> left , tree -> key , - 1 );huffman_print ( tree -> right , tree -> key , 1 );}}
void print_huffman ( HuffmanTree tree ){if ( tree != NULL )huffman_print ( tree , tree -> key , 0 );}
/*** 最小堆:为Huffman树服务的。** @author skywang* @date 2014/03/25*/
#include <stdio.h>#include <stdlib.h>#include "huffman.h"
static HuffmanNode * m_heap ; // 最小堆的数组static int m_capacity ; // 总的容量static int m_size ; // 当前有效数据的数量/** 最小堆的向下调整算法** 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。** 参数说明:* start -- 被下调节点的起始位置(一般为0,表示从第1个开始)* end -- 截至范围(一般为数组中最后一个元素的索引)*/static void minheap_filterdown ( int start , int end ){int c = start ; // 当前(current)节点的位置int l = 2 * c + 1 ; // 左(left)孩子的位置HuffmanNode tmp = m_heap [ c ]; // 当前(current)节点
while ( l <= end ){// "l"是左孩子,"l+1"是右孩子if ( l < end && m_heap [ l ]. key > m_heap [ l + 1 ]. key )l ++ ; // 左右两孩子中选择较小者,即m_heap[l+1]if ( tmp . key <= m_heap [ l ]. key )break ; //调整结束else{m_heap [ c ] = m_heap [ l ];c = l ;l = 2 * l + 1 ;}}m_heap [ c ] = tmp ;}/** 最小堆的向上调整算法(从start开始向上直到0,调整堆)** 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。** 参数说明:* start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)*/static void filter_up ( int start ){int c = start ; // 当前节点(current)的位置int p = ( c - 1 ) / 2 ; // 父(parent)结点的位置HuffmanNode tmp = m_heap [ c ]; // 当前节点(current)
while ( c > 0 ){if ( m_heap [ p ]. key <= tmp . key )break ;else{m_heap [ c ] = m_heap [ p ];c = p ;p = ( p - 1 ) / 2 ;}}m_heap [ c ] = tmp ;}/** 将node插入到二叉堆中** 返回值:* 0,表示成功* -1,表示失败*/int dump_to_minheap ( HuffmanNode * node ){// 如果"堆"已满,则返回if ( m_size == m_capacity )return - 1 ;m_heap [ m_size ] = * node ; // 将"node的数据"全部复制到"数组末尾"filter_up ( m_size ); // 向上调整堆m_size ++ ; // 堆的实际容量+1
return 0 ;}
/** 交换两个HuffmanNode节点的全部数据*/static void swap_node ( int i , int j ){HuffmanNode tmp = m_heap [ i ];m_heap [ i ] = m_heap [ j ];m_heap [ j ] = tmp ;}
/** 新建一个节点,并将最小堆中最小节点的数据复制给该节点。* 然后除最小节点之外的数据重新构造成最小堆。** 返回值:* 失败返回NULL。*/HuffmanNode * dump_from_minheap (){// 如果"堆"已空,则返回if ( m_size == 0 )return NULL ;
HuffmanNode * node ;if (( node = ( HuffmanNode * ) malloc ( sizeof ( HuffmanNode ))) == NULL )return NULL ;
// 将"最小节点的全部数据"复制给node* node = m_heap [ 0 ];
swap_node ( 0 , m_size - 1 ); // 交换"最小节点"和"最后一个节点"minheap_filterdown ( 0 , m_size - 2 ); // 将m_heap[0...m_size-2]构造成一个最小堆m_size -- ;
return node ;}
/** 打印二叉堆** 返回值:* 0,表示成功* -1,表示失败*/void minheap_print (){int i ;for ( i = 0 ; i < m_size ; i ++ )printf ( "%d " , m_heap [ i ]. key );}
/** 创建最小堆** 参数说明:* a -- 数据所在的数组* size -- 数组大小*/void create_minheap ( Type a [], int size ){int i ;
// 创建最小堆所对应的数组m_size = size ;m_capacity = size ;m_heap = ( HuffmanNode * ) malloc ( sizeof ( HuffmanNode ) * size );
// 初始化数组for ( i = 0 ; i < size ; i ++ ){m_heap [ i ]. key = a [ i ];m_heap [ i ]. parent = m_heap [ i ]. left = m_heap [ i ]. right = NULL ;}
// 从(size/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个最小堆。for ( i = size / 2 - 1 ; i >= 0 ; i -- )minheap_filterdown ( i , size - 1 );}
// 销毁最小堆void destroy_minheap (){m_size = 0 ;m_capacity = 0 ;free ( m_heap );}
/*** C 语言: Huffman树** @author skywang* @date 2014/03/25*/#include <stdio.h>#include "huffman.h"
#define LENGTH(a) ( (sizeof(a)) / (sizeof(a[0])) )
void main (){int a [] = { 5 , 6 , 8 , 7 , 15 };int i , ilen = LENGTH ( a );HuffmanTree root = NULL ;
printf ( "== 添加数组: " );for ( i = 0 ; i < ilen ; i ++ )printf ( "%d " , a [ i ]);
// 创建数组a对应的Huffman树root = create_huffman ( a , ilen );
printf ( " \n == 前序遍历: " );preorder_huffman ( root );
printf ( " \n == 中序遍历: " );inorder_huffman ( root );
printf ( " \n == 后序遍历: " );postorder_huffman ( root );printf ( " \n " );
printf ( "== 树的详细信息: \n " );print_huffman ( root );
// 销毁二叉树destroy_huffman ( root );}