邻接矩阵有向图(一)之 C语言详解

出自:

本章介绍邻接矩阵有向图。在"图的理论基础"中已经对图进行了理论介绍,这里就不再对图的概念进行重复说明了。和以往一样,本文会先给出C语言的实现;后续再分别给出C++和Java版本的实现。实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可。若文章有错误或不足的地方,请不吝指出!

目录 
1
邻接矩阵有向图的介绍 
2邻接矩阵有向图的代码说明 
3邻接矩阵有向图的完整源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

邻接矩阵有向图的介绍

邻接矩阵有向图是指通过邻接矩阵表示的有向图。

上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,<B,E>,<B,F>,<C,E>,<D,C>,<E,B>,<E,D>,<F,G>"共9条边。

上图右边的矩阵是G2在内存中的邻接矩阵示意图。A[i][j]=1表示第i个顶点到第j个顶点是一条边,A[i][j]=0则表示不是一条边;而A[i][j]表示的是第i行第j列的值;例如,A[1,2]=1,表示第1个顶点(即顶点B)到第2个顶点(C)是一条边。

邻接矩阵有向图的代码说明

1. 基本定义

复制代码
// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
复制代码

Graph是邻接矩阵对应的结构体。

vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。

2. 创建矩阵

这里介绍提供了两个创建矩阵的方法。一个是用已知数据,另一个则需要用户手动输入数据

2.1 创建图(用已提供的矩阵)

复制代码
/*
 * 创建图(用已提供的矩阵)
 */
Graph* create_example_graph()
{
    char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
    char edges[][2] = {
        {'A', 'B'}, 
        {'B', 'C'}, 
        {'B', 'E'}, 
        {'B', 'F'}, 
        {'C', 'E'}, 
        {'D', 'C'}, 
        {'E', 'B'}, 
        {'E', 'D'}, 
        {'F', 'G'}}; 
    int vlen = LENGTH(vexs);
    int elen = LENGTH(edges);
    int i, p1, p2;
    Graph* pG;

    // 输入"顶点数"和"边数"
    if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(Graph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = vlen;
    pG->edgnum = elen;
    // 初始化"顶点"
    for (i = 0; i < pG->vexnum; i++)
    {
        pG->vexs[i] = vexs[i];
    }

    // 初始化"边"
    for (i = 0; i < pG->edgnum; i++)
    {
        // 读取边的起始顶点和结束顶点
        p1 = get_position(*pG, edges[i][0]);
        p2 = get_position(*pG, edges[i][1]);

        pG->matrix[p1][p2] = 1;
    }

    return pG;
}
复制代码

createexamplegraph()是的作用是创建一个邻接矩阵有向图。实际上,该方法创建的有向图,就是上面的图G2。

2.2 创建图(自己输入)

复制代码
/*
 * 创建图(自己输入)
 */
Graph* create_graph()
{
    char c1, c2;
    int v, e;
    int i, p1, p2;
    Graph* pG;

    // 输入"顶点数"和"边数"
    printf("input vertex number: ");
    scanf("%d", &v);
    printf("input edge number: ");
    scanf("%d", &e);
    if ( v < 1 || e < 1 || (e > (v * (v-1))))
    {
        printf("input error: invalid parameters!\n");
        return NULL;
    }

    if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(Graph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = v;
    pG->edgnum = e;
    // 初始化"顶点"
    for (i = 0; i < pG->vexnum; i++)
    {
        printf("vertex(%d): ", i);
        pG->vexs[i] = read_char();
    }

    // 初始化"边"
    for (i = 0; i < pG->edgnum; i++)
    {
        // 读取边的起始顶点和结束顶点
        printf("edge(%d):", i);
        c1 = read_char();
        c2 = read_char();

        p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);
        if (p1==-1 || p2==-1)
        {
            printf("input error: invalid edge!\n");
            free(pG);
            return NULL;
        }

        pG->matrix[p1][p2] = 1;
    }

    return pG;
}
复制代码

create_graph()是读取用户的输入,将输入的数据转换成对应的有向图。

邻接矩阵有向图的完整源码

点击查看:源代码

 
 
/**
* C: 邻接矩阵表示的"有向图(Matrix Directed Graph)"
*
* @author skywang
* @date 2014/04/18
*/

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

#define MAX 100
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a) (sizeof(a)/sizeof(a[0]))

// 邻接矩阵
typedef struct _graph
{
     char vexs [ MAX ]; // 顶点集合
     int vexnum ; // 顶点数
     int edgnum ; // 边数
     int matrix [ MAX ][ MAX ]; // 邻接矩阵
} Graph , * PGraph ;

/*
* 返回ch在matrix矩阵中的位置
*/
static int get_position ( Graph g , char ch )
{
     int i ;
     for ( i = 0 ; i < g . vexnum ; i ++ )
         if ( g . vexs [ i ] == ch )
             return i ;
     return - 1 ;
}

/*
* 读取一个输入字符
*/
static char read_char ()
{
     char ch ;

     do {
         ch = getchar ();
     } while ( ! isLetter ( ch ));

     return ch ;
}

/*
* 创建图(自己输入)
*/
Graph * create_graph ()
{
     char c1 , c2 ;
     int v , e ;
     int i , p1 , p2 ;
     Graph * pG ;
    
     // 输入"顶点数"和"边数"
     printf ( "input vertex number: " );
     scanf ( "%d" , & v );
     printf ( "input edge number: " );
     scanf ( "%d" , & e );
     if ( v < 1 || e < 1 || ( e > ( v * ( v - 1 ))))
     {
         printf ( "input error: invalid parameters! \n " );
         return NULL ;
     }
    
     if (( pG = ( Graph * ) malloc ( sizeof ( Graph ))) == NULL )
         return NULL ;
     memset ( pG , 0 , sizeof ( Graph ));

     // 初始化"顶点数"和"边数"
     pG -> vexnum = v ;
     pG -> edgnum = e ;
     // 初始化"顶点"
     for ( i = 0 ; i < pG -> vexnum ; i ++ )
     {
         printf ( "vertex(%d): " , i );
         pG -> vexs [ i ] = read_char ();
     }

     // 初始化"边"
     for ( i = 0 ; i < pG -> edgnum ; i ++ )
     {
         // 读取边的起始顶点和结束顶点
         printf ( "edge(%d):" , i );
         c1 = read_char ();
         c2 = read_char ();

         p1 = get_position ( * pG , c1 );
         p2 = get_position ( * pG , c2 );
         if ( p1 ==- 1 || p2 ==- 1 )
         {
             printf ( "input error: invalid edge! \n " );
             free ( pG );
             return NULL ;
         }

         pG -> matrix [ p1 ][ p2 ] = 1 ;
     }

     return pG ;
}

/*
* 创建图(用已提供的矩阵)
*/
Graph * create_example_graph ()
{
     char vexs [] = { 'A' , 'B' , 'C' , 'D' , 'E' , 'F' , 'G' };
     char edges [][ 2 ] = {
         { 'A' , 'B' },
         { 'B' , 'C' },
         { 'B' , 'E' },
         { 'B' , 'F' },
         { 'C' , 'E' },
         { 'D' , 'C' },
         { 'E' , 'B' },
         { 'E' , 'D' },
         { 'F' , 'G' }};
     int vlen = LENGTH ( vexs );
     int elen = LENGTH ( edges );
     int i , p1 , p2 ;
     Graph * pG ;
    
     // 输入"顶点数"和"边数"
     if (( pG = ( Graph * ) malloc ( sizeof ( Graph ))) == NULL )
         return NULL ;
     memset ( pG , 0 , sizeof ( Graph ));

     // 初始化"顶点数"和"边数"
     pG -> vexnum = vlen ;
     pG -> edgnum = elen ;
     // 初始化"顶点"
     for ( i = 0 ; i < pG -> vexnum ; i ++ )
     {
         pG -> vexs [ i ] = vexs [ i ];
     }

     // 初始化"边"
     for ( i = 0 ; i < pG -> edgnum ; i ++ )
     {
         // 读取边的起始顶点和结束顶点
         p1 = get_position ( * pG , edges [ i ][ 0 ]);
         p2 = get_position ( * pG , edges [ i ][ 1 ]);

         pG -> matrix [ p1 ][ p2 ] = 1 ;
     }

     return pG ;
}

/*
* 打印矩阵队列图
*/
void print_graph ( Graph G )
{
     int i , j ;

     printf ( "Martix Graph: \n " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         for ( j = 0 ; j < G . vexnum ; j ++ )
             printf ( "%d " , G . matrix [ i ][ j ]);
         printf ( " \n " );
     }
}

void main ()
{
     Graph * pG ;

     // 自定义"图"(输入矩阵队列)
     //pG = create_graph();
     // 采用已有的"图"
     pG = create_example_graph ();

     print_graph ( * pG ); // 打印图
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值