出自:
本章介绍邻接矩阵有向图。在"图的理论基础"中已经对图进行了理论介绍,这里就不再对图的概念进行重复说明了。和以往一样,本文会先给出C语言的实现;后续再分别给出C++和Java版本的实现。实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可。若文章有错误或不足的地方,请不吝指出!
目录
1. 邻接矩阵有向图的介绍
2. 邻接矩阵有向图的代码说明
3. 邻接矩阵有向图的完整源码转载请注明出处:http://www.cnblogs.com/skywang12345/
更多内容:数据结构与算法系列 目录
邻接矩阵有向图的介绍
邻接矩阵有向图是指通过邻接矩阵表示的有向图。
上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,<B,E>,<B,F>,<C,E>,<D,C>,<E,B>,<E,D>,<F,G>"共9条边。
上图右边的矩阵是G2在内存中的邻接矩阵示意图。A[i][j]=1表示第i个顶点到第j个顶点是一条边,A[i][j]=0则表示不是一条边;而A[i][j]表示的是第i行第j列的值;例如,A[1,2]=1,表示第1个顶点(即顶点B)到第2个顶点(C)是一条边。
邻接矩阵有向图的代码说明
1. 基本定义
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
2. 创建矩阵
这里介绍提供了两个创建矩阵的方法。一个是用已知数据,另一个则需要用户手动输入数据。
2.1 创建图(用已提供的矩阵)
/*
* 创建图(用已提供的矩阵)
*/
Graph* create_example_graph()
{
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char edges[][2] = {
{'A', 'B'},
{'B', 'C'},
{'B', 'E'},
{'B', 'F'},
{'C', 'E'},
{'D', 'C'},
{'E', 'B'},
{'E', 'D'},
{'F', 'G'}};
int vlen = LENGTH(vexs);
int elen = LENGTH(edges);
int i, p1, p2;
Graph* pG;
// 输入"顶点数"和"边数"
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));
// 初始化"顶点数"和"边数"
pG->vexnum = vlen;
pG->edgnum = elen;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
pG->vexs[i] = vexs[i];
}
// 初始化"边"
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点和结束顶点
p1 = get_position(*pG, edges[i][0]);
p2 = get_position(*pG, edges[i][1]);
pG->matrix[p1][p2] = 1;
}
return pG;
}
createexamplegraph()是的作用是创建一个邻接矩阵有向图。实际上,该方法创建的有向图,就是上面的图G2。
2.2 创建图(自己输入)
/*
* 创建图(自己输入)
*/
Graph* create_graph()
{
char c1, c2;
int v, e;
int i, p1, p2;
Graph* pG;
// 输入"顶点数"和"边数"
printf("input vertex number: ");
scanf("%d", &v);
printf("input edge number: ");
scanf("%d", &e);
if ( v < 1 || e < 1 || (e > (v * (v-1))))
{
printf("input error: invalid parameters!\n");
return NULL;
}
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));
// 初始化"顶点数"和"边数"
pG->vexnum = v;
pG->edgnum = e;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
printf("vertex(%d): ", i);
pG->vexs[i] = read_char();
}
// 初始化"边"
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点和结束顶点
printf("edge(%d):", i);
c1 = read_char();
c2 = read_char();
p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2);
if (p1==-1 || p2==-1)
{
printf("input error: invalid edge!\n");
free(pG);
return NULL;
}
pG->matrix[p1][p2] = 1;
}
return pG;
}
create_graph()是读取用户的输入,将输入的数据转换成对应的有向图。
邻接矩阵有向图的完整源码
点击查看:源代码
/*** C: 邻接矩阵表示的"有向图(Matrix Directed Graph)"** @author skywang* @date 2014/04/18*/
#include <stdio.h>#include <stdlib.h>#include <malloc.h>#include <string.h>
#define MAX 100#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))#define LENGTH(a) (sizeof(a)/sizeof(a[0]))
// 邻接矩阵typedef struct _graph{char vexs [ MAX ]; // 顶点集合int vexnum ; // 顶点数int edgnum ; // 边数int matrix [ MAX ][ MAX ]; // 邻接矩阵} Graph , * PGraph ;
/** 返回ch在matrix矩阵中的位置*/static int get_position ( Graph g , char ch ){int i ;for ( i = 0 ; i < g . vexnum ; i ++ )if ( g . vexs [ i ] == ch )return i ;return - 1 ;}
/** 读取一个输入字符*/static char read_char (){char ch ;
do {ch = getchar ();} while ( ! isLetter ( ch ));
return ch ;}
/** 创建图(自己输入)*/Graph * create_graph (){char c1 , c2 ;int v , e ;int i , p1 , p2 ;Graph * pG ;// 输入"顶点数"和"边数"printf ( "input vertex number: " );scanf ( "%d" , & v );printf ( "input edge number: " );scanf ( "%d" , & e );if ( v < 1 || e < 1 || ( e > ( v * ( v - 1 )))){printf ( "input error: invalid parameters! \n " );return NULL ;}if (( pG = ( Graph * ) malloc ( sizeof ( Graph ))) == NULL )return NULL ;memset ( pG , 0 , sizeof ( Graph ));
// 初始化"顶点数"和"边数"pG -> vexnum = v ;pG -> edgnum = e ;// 初始化"顶点"for ( i = 0 ; i < pG -> vexnum ; i ++ ){printf ( "vertex(%d): " , i );pG -> vexs [ i ] = read_char ();}
// 初始化"边"for ( i = 0 ; i < pG -> edgnum ; i ++ ){// 读取边的起始顶点和结束顶点printf ( "edge(%d):" , i );c1 = read_char ();c2 = read_char ();
p1 = get_position ( * pG , c1 );p2 = get_position ( * pG , c2 );if ( p1 ==- 1 || p2 ==- 1 ){printf ( "input error: invalid edge! \n " );free ( pG );return NULL ;}
pG -> matrix [ p1 ][ p2 ] = 1 ;}
return pG ;}
/** 创建图(用已提供的矩阵)*/Graph * create_example_graph (){char vexs [] = { 'A' , 'B' , 'C' , 'D' , 'E' , 'F' , 'G' };char edges [][ 2 ] = {{ 'A' , 'B' },{ 'B' , 'C' },{ 'B' , 'E' },{ 'B' , 'F' },{ 'C' , 'E' },{ 'D' , 'C' },{ 'E' , 'B' },{ 'E' , 'D' },{ 'F' , 'G' }};int vlen = LENGTH ( vexs );int elen = LENGTH ( edges );int i , p1 , p2 ;Graph * pG ;// 输入"顶点数"和"边数"if (( pG = ( Graph * ) malloc ( sizeof ( Graph ))) == NULL )return NULL ;memset ( pG , 0 , sizeof ( Graph ));
// 初始化"顶点数"和"边数"pG -> vexnum = vlen ;pG -> edgnum = elen ;// 初始化"顶点"for ( i = 0 ; i < pG -> vexnum ; i ++ ){pG -> vexs [ i ] = vexs [ i ];}
// 初始化"边"for ( i = 0 ; i < pG -> edgnum ; i ++ ){// 读取边的起始顶点和结束顶点p1 = get_position ( * pG , edges [ i ][ 0 ]);p2 = get_position ( * pG , edges [ i ][ 1 ]);
pG -> matrix [ p1 ][ p2 ] = 1 ;}
return pG ;}
/** 打印矩阵队列图*/void print_graph ( Graph G ){int i , j ;
printf ( "Martix Graph: \n " );for ( i = 0 ; i < G . vexnum ; i ++ ){for ( j = 0 ; j < G . vexnum ; j ++ )printf ( "%d " , G . matrix [ i ][ j ]);printf ( " \n " );}}
void main (){Graph * pG ;
// 自定义"图"(输入矩阵队列)//pG = create_graph();// 采用已有的"图"pG = create_example_graph ();
print_graph ( * pG ); // 打印图}