为帮助备考AMC8美国数学竞赛的孩子们了解比赛的题型,掌握相关的知识,我会陆续分享2000-2024年的比赛真题,每道题都有解析,帮助孩子们不但会做题,还掌握背后的知识,从而达到举一反三的效果,提升比赛成绩,反过来促进数学的课堂学习。
1、AMC8历年真题练习2020年第10题
解析:这道题目考的是排列组合,也是每年AMC8比赛中的必考题型之一。题目序号为10,难度中等。
Steelie和Tiger不能相邻,所以用插空法来做。先把徐了Steelie和Tiger之外剩下的2个进行排列,共有2!=2种方法。此时形成3个空,要让Steelie和Tiger不相邻,则必须从这三个空中选择两个,且要考虑它们的顺序,所以是排列,共有6种方法。所以总共2*6=12种方法。选C。
2、AMC8历年真题练习2018年第16题
这道题仍然是排列组合,和前面那道题的解法和思路是类似的。
题目要求阿拉伯语和西班牙语分别在一起,所以可以把这些书“打包”在一起考虑——即作为一个整体考虑,因为是不同的书,所以这个整体内还有不同的排列方法,阿拉伯语两本,有2!=2种方法。西班牙语有4本有4!=24种方法。
然后再把打包好的西班牙语和阿拉伯语和3本德语书放在一起,有5本书(打包的算1本),这5本书共有5!=120种方法,根据乘法原理,一共有2*24*120=5760种排列的方法。
温馨提示:这种“打包”的方法在解这类题时非常有用,请务必仔细体会、吃透。
3、AMC8历年真题练习2013年第15题
这道题目序号15,但是难度一点都不高,计算仔细一点即可。
我们分别根据每一个算式解出p、r、s的值即可。从第一个算式可以得出3^p=90-3^4=9,所以P=2。第二个算式得出2^r=76-44=32,所以r=5。第三个算式得出6^s=1421-5^3=1296,s=4。所以p*r*s=2*5*4=40。选B。
4、AMC8历年真题练习2013年第19题
这道题序号为19,属于中等难度的试题。属于逻辑推理题,但是难度其实不高的,一堆人名我们用首字母来代替,H、B、C。因为H展示了分数,所以B和C的描述是基于他们的分数和H的对比得出的,根据C的话可以得出C>H,根据B的话可以得出H>B。所以三人的乘积从高到低是:CHB,选D。
5、AMC8历年真题练习2010年第7题
这道题考的是平面几何,掌握了三角形、正方形的面积公式即可顺利作答。
从图形上可以看到,八边形面积的一半为5(一共10个单位正方形,一半就5个),所以PQ线段下方的图形面积为5,减去右下角那个完整的正方形,得到三角形面积为4,这个三角形底边为5,设高为4.可以得到5h/2=4,h=8/5。所以QY=8/5-1=3/5,所以XQ=2/5,所以XQ/QY=2/3。选D。
温馨提示:这道题看仔细点,最后答案是2/3,而不是3/2。不过好在选项没有3/2。
总的来说,AMC8美国数学竞赛的题目难度中等,虽然这个比赛设置的是初二及以下学生参加,但是小学生稍加训练完全可以拿高分。这也是为什么越来越多的中国孩子参加这个比赛的原因,多个证书(奖状)多条路。
六分成长针对AMC8和AMC10备考资源,欢迎了解更多
上述六分成长独家制作的在线练习题,符合学习和认知心理学,来源于完整的历年AMC8和AMC10真题,并且会持续更新。AMC8和AMC10备考可用,反复练习,也有利于小学、初中数学能力提升。