科学高效备考AMC8和AMC10竞赛,吃透2000-2024年1850道真题和解析

本文强调通过做AMC8和AMC10的真题来增强孩子的数学能力,提供2000-2024年完整真题及解析,涵盖代数、数列等知识点,适用于竞赛备考和数学能力提升。资源设计遵循心理学和教育学原则,包含解析与配套材料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多做真题,吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一,通过做真题,可以帮助孩子找到真实竞赛的感觉,而且更加贴近比赛的内容,可以通过真题查漏补缺,更有针对性的补齐知识的短板。

AMC8和AMC10美国数学竞赛的题目广度很广,深度相对一般,对孩子来说更容易建立信心,而且,这些题目吃透了,其背后的知识点、建立的解题思路和方法对校内小学到初中的数学学习也有直接的促进。

为帮助孩子们学习,我整理了2000-2004年的全部AMC8真题(完整版共600道,且修正了官方发布的原试卷中的少量bug),以及2000-2023年的全部AMC10真题(完整版共1250道),并且全部独家制作成多种在线练习卷,每道题都有详细解析和配套文档、教材。便于孩子利用好碎片化时间,在AMC8竞赛和AMC10竞赛中取得好成绩。

今天我们继续做3道AMC8真题和2道AMC10真题,并进行详细解析。完整学习资料和信息请查看文末。

2000-2024年AMC8真题和解析:2018年第17题

这道题的考点是代数,解应用题。

2000-2024年AMC8真题和解析:2016年第3题

这道题的考点是代数,算术。

这道题除了列方程计算以外,还可以直接把答案代入计算也可以快速作答。

2000-2024年AMC8真题和解析:2015年第23题

这道题的考点是数列,答案选D。


2000-2023年AMC10真题和解析:2012年第10题

这道题的考点是数列(等差数列)。

假设最小的扇形角度为x度,则这些圆心角为x,x+d,x+2d,...,x+11d。它们的和为360,即(x+x+11d)*12/2=360,即2x+11d=60,要使得x和d均为正整数,则d=2,x=19,或d=4,x=8因此x最小可能是8,答案选择C。

2000-2023年AMC10真题和解析:2006年第3题

这道题的考点是代数(比例)。

假设Mary的年龄是m岁,则有m/30=3/5。解得m=18,答案选B。


AMC8和AMC10的高质量、科学的备考资源,欢迎了解更多

上述在线练习题,基于认知心理学和教育学原理设计,来源于完整的历年AMC8和AMC10(包括AB卷)真题,不限设备、自动判卷、多种练习形式、每道题都有解析,并且持续更新。

这些真题的在线练习除了可以用于参加竞赛备考、反复练习,即使不参加竞赛也可促进小学、初中数学能力提升。还有配套的系统学习文档、视频资料赠送。欢迎联系我了解和获取。

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度场景 大规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新的成长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值