小蓝本智能营销解决方案助力TOB企业破解获客难题

近年来,随着B端市场竞争的日益激烈,许多企业面临着获客成本不断增加的问题。在此背景下,市场上涌现出了一批旨在帮助企业降低获客成本、提高营销效率的解决方案供应商。其中,小蓝本作为一个新兴的智能营销服务平台,通过推出一系列针对不同行业的定制化智能营销解决方案,逐渐在市场上崭露头角,受到了广泛关注。

小蓝本成立于2019年,隶属于51信用卡集团,主要业务方向是利用大数据和人工智能技术为企业提供营销获客支持。

小蓝本隶属于51信用卡集团据报道,该公司开发了一套智能营销系统,该系统拥有超过数亿市场主体的全国企业图谱,能够对企业客户进行精细化追踪、触达和管理,确保销售流程更加高效,从而提升客户转化率。

据小蓝本介绍,为了更好地满足不同行业的需求,小蓝本相继推出了银行版、工商财税版、会展版、招商版以及海外拓客版等多个行业定制解决方案。例如,银行版特别强调了风险情报的监控功能;工商财税版则针对财税服务的特点提供了多种筛选选项;会展版和招商版则聚焦于展会和招商活动中的具体问题进行了优化;海外拓客版则是针对国际市场的特点,提供了详尽的市场洞察和客户拓展服务。

值得注意的是,小蓝本于2023年12月获得了由中国信息通信研究院颁发的数据安全技术能力认证(DSTC),成为国内首批获得此认证的智能销售SaaS企业之一。这一认证反映了小蓝本在数据安全领域的技术实力,同时也提升了客户对其产品和服务的信任度。

面对当前复杂的市场环境,小蓝本表示将继续加大技术创新力度,优化服务质量,深入探索各垂直领域,为B端企业提供更加有效的智能营销解决方案。小蓝本的成功案例展示了在To B市场中,通过技术创新和精准服务可以有效解决获客难题,同时也为其他企业在数字化转型过程中提供了有益的参考。

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值