直方图均衡化是一种常见的增强图像对比度的方法,使用该方法可以增强局部图像的对比度,尤其在数据较为相似的图像中作用更加明显。直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。
有两个问题比较难懂,一是为什么要选用累积分布函数,二是为什么使用累积分布函数处理后像素值会均匀分布。
第一个问题。均衡化过程中,必须要保证两个条件:①像素无论怎么映射,一定要保证原来的大小关系不变,较亮的区域,依旧是较亮的,较暗依旧暗,只是对比度增大,绝对不能明暗颠倒;②如果是八位图像,那么像素映射函数的值域应在0和255之间的,不能越界。综合以上两个条件,累积分布函数是个好的选择,因为累积分布函数是单调增函数(控制大小关系),并且值域是0到1(控制越界问题),所以直方图均衡化中使用的是累积分布函数。
第二个问题。累积分布函数具有一些好的性质,那么如何运用累积分布函数使得直方图均衡化?比较概率分布函数和累积分布函数,前者的二维图像是参差不齐的,后者是单调递增的。直方图均衡化过程中,映射方法是
其中,n是图像中像素的总和,是当前灰度级的像素个数,L是图像中可能的灰度级总数。
计算步骤:1)计算图像f(x,y)的各灰度级中像素出现的概率p(i)。
2) 计算p的累计概率函数c(i),c即为图像的累计归一化直方图
3)将c(i)缩放至0~255范围内
如下列图片
计算映射
在opencv中可以直接用
equalizeHist(src,dst)
参考资料:https://blog.csdn.net/guoyk1990/article/details/8108667
https://www.cnblogs.com/tianyalu/p/5687782.html