开源项目实现简单实用的股票回测

本文分享如何用50行Python代码构建股票回测工具,结合backtrader和AkShare,探讨策略编写和实战应用中的问题与解决方案。
摘要由CSDN通过智能技术生成

1 引言

之前,尝试做股票工具一直想做的大而全,试图抓取长期的各个维度数据,然后统计或者训练模型。想把每个细节做到完美,结果却陷入了细节之中,最后烂尾了。

最近,听到大家分享了一些关于深度学习、时序模型、强化学习在股票预测方面的新论文。但是觉得这些理论与我们的实际操作还有很大的距离。目前好像更需要的是一些具体而实用的辅助工具。

这次,尝试用 50 行代码完成一个简单的股票回测工具。输入的数据是 A 股的股票代码和时间,通过工具抓取股票数据。然后编写了策略,并使用回测工具来展示策略在数据上的具体操作和盈亏。

具体使用场景如下:当我们想采用某种策略来操作某支股票时,可以选择想要购买的股票,或者选择与之类似的股票;然后,选择一个与当前大趋势相似的时段,用历史数据来验证这个策略是否可行,以及其可能带来的盈利效果。

你不会编写策略也没关系。这里使用的 backtrader 库自 2015 年就已经开源,相关资料丰富。一般的交易策略代码,编程机器人(如 gpt4, copilot)都能根据文字描述直接编写,只需要稍作修改即可。

2 工具介绍

这里采用了两种工具,一是用于抓取 A 股股票数据的 akshare,另一是用于回测的经典工具 backtrader。

2.1 backtrader

Backtrader 是 2015 年开源的 Python 量化回测框架。它的优点包括:资料丰富;整体结构良好,并提供许多常用的统计工具,用户可直接调用;功能相对单一,使用方法也较为简单。其缺点在于:已经停止更新很长时间,对新的库支持存在问题。我试用了其他几个开源框架,发现它们要么不够成熟,要么也已停更很久,暂时还没有找到更好的替代品。如果有朋友知道有更好的工具,希望能私信告诉我。

2.2 AkShare

仅用 210 行的 Python 代码,我们就可以实现对一段时间内日线,周线,分钟线等的抓取。这个程序的功能相当直观且简单,我们可以根据自己的需求进行修改。

2.3 具体实现

PYTHON

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import backtrader as bt
import matplotlib.pyplot as plt

ASHARE_PATH = '/opt/xieyan/git/Ashare/' # ashare的路径
import sys
if ASHARE_PATH not in sys.path:
sys.path.append(ASHARE_PATH)
from Ashare import *

class SmaCross(bt.Strategy):
    params = dict(
        pfast=5,  # 短期均线周期
        pslow=10  # 长期均线周期
    )
 
    def __init__(self):
        sma1 = bt.ind.SMA(period=self.p.pfast)  # 短期均线
        sma2 = bt.ind.SMA(period=self.p.pslow)  # 长期均线
        self.crossover = bt.ind.CrossOver(sma1, sma2)  # 均线交叉信号
        # 这里里可以添加其他指标显示
        bt.indicators.MACDHisto(self.datas[0])
 
    def next(self):
        if not self.position:  # 还没有仓位
            if self.crossover > 0:  # 金叉
                self.buy()  # 买入
                print('Buying at', self.data.close[0])
        elif self.crossover < 0:  # 死叉
            self.close()  # 卖出
            print('Selling at', self.data.close[0])

def get_dataframe():
    df=get_price('000538.XSHE',frequency='1d',count=60) # 以云南白药为例
    df.rename_axis('datetime', inplace=True)
    return df

if __name__ == '__main__':
    plt.plot([1,2,3,4])
    plt.show()

    cerebro = bt.Cerebro()
    cerebro.addstrategy(SmaCross)
    data = bt.feeds.PandasData(dataname=get_dataframe())
    cerebro.adddata(data)
    cerebro.addsizer(bt.sizers.FixedSize, stake=100) # 最小交易的单位
    cerebro.broker.setcash(10000.0) # 设置初始资金
    cerebro.broker.setcommission(commission=0.001) # 设置交易手续费
    print('初始金额: %.2f' % cerebro.broker.getvalue())
    cerebro.run()
    print('最终金额: %.2f' % cerebro.broker.getvalue())
    cerebro.plot(width=30, height=15, dpi=300, style='candlestick')

3 问题及解决

3.1 backtrader 绘图显示不出来

  • 现象:在进行绘图操作时,虽未出现错误,但在 jupyter 中无法显示图像。
  • 分析:这可能是由于 matplotlib 版本问题导致的。进一步追踪到 plot 函数内部,发现在绘图前先调用 plt 进行绘图,就可以正常显示了。
  • 解决方法:在调用 backtrader 库进行绘图前,先执行一次 plt 绘图。

PYTHON

1
2
3
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.show()

3.2 绘图时显示字体太大

  • 现象:绘图时由于字体太大,无法正常显示所有内容。
  • 分析:试图用 matplotlib plt params 设置字体大小,但不起作用;由于时间有限,就直接跟到库里,简单粗暴地修改了代码。
  • 解决方法:修改 backtrader/plot/plot.py 的 PInfo 类的 __init__ 函数,加入:

PYTHON

1
self.sch.subtxtsize = 6

4 思考

人的思考和判断是一个不断变化的过程,往往在事后回顾时,只留下些许碎片,无法完全重现当时的具体状态。此外,人对各个维度的趋势、行业前景以及政策的判断,很难直接用程序或数值来描述。因此,将策略详细地写出来,可以帮助进一步梳理和明确逻辑;这不仅可以用历史数据来验证策略的有效性,还能减少情绪的影响,进而实现实时监控和提醒。利用程序既可以节省时间,又可以监控更多情况,增加确定性,将程序的优势和人的优势结合起来。

5 相关资源

5.1 开源财经资源

  • akshare 项目地址:https://github.com/akfamily/akshare
  • akshare 教程:https://akshare.akfamily.xyz/data/stock/stock.html
  • 其它 A 股数据下载:https://github.com/gsyyysg/StockFormer
  • 其它 A 股数据下载:https://github.com/jrothschild33/learn_backtrader

5.2 backtrader

  • 项目地址:https://github.com/mementum/backtrader
  • 教程:https://github.com/jrothschild33/learn_backtrader
  • 使用示例:https://github.com/horacepei/qtbt
  • 使用说明:https://blog.csdn.net/zhouhy0903/article/details/119025551
backtrader是一个开源Python框架,用于进行多股票回测。它提供了丰富的工具和功能,可以帮助我们进行高效准确的策略回测。 在backtrader中,我们可以很方便地定义自己的交易策略,并将其应用到多支股票回测中。首先,我们需要创建一个策略类,其中包含我们想要实现的交易逻辑和规则。backtrader提供了丰富的内置指标和工具,可以方便地辅助我们进行技术分析和信号生成。 接着,我们需要创建一个数据源,来获取多支股票的历史数据。backtrader支持多种数据源,包括CSV文件、Pandas DataFrame和在线数据源等。我们可以使用backtrader内置的数据加载器来导入和管理股票数据。 一旦我们定义好了策略和数据源,就可以创建一个回测引擎,并将策略和数据源添加到回测引擎中。backtrader提供了负责管理交易运行和结果分析的回测引擎,可以帮助我们简化回测过程和结果的获取。 在回测过程中,backtrader会自动按照我们定义的策略规则进行买卖操作,并计算每日的收益率和持仓情况。我们可以通过backtrader的结果分析工具来获取回测结果和统计指标,如累计收益、年化收益率和夏普比率等。 总之,backtrader提供了一个强大而灵活的框架,可以帮助我们进行多股票回测。通过定义交易策略、导入股票数据和使用回测引擎,我们可以进行有效的投资组合管理和策略优化,提高投资决策的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值