欢迎使用CSDN-markdown编辑器

看《机器学习实战》中的第六章SVM,编程时array和matrix的乘法看的有点混乱,找到一篇博客觉得写的还比较清楚————转载自nex3z’s blog

NumPy中array和matrix用于矩阵乘法时的区别

在NumPy中,array用于表示通用的N维数组,matrix则特定用于线性代数计算。array和matrix都可以用来表示矩阵,二者在进行乘法操作时,有一些不同之处。
用array时,运算符 * 用于计算数量积(点乘),函数 dot() 用于计算矢量积(叉乘),例子如:

import numpy as np

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])

print 'a * b = \n', a * b
print 'dot(a, b) = \n', np.dot(a, b)

运行结果:

a * b = 
[[ 5 12]
 [21 32]]
dot(a, b) = 
[[19 22]
 [43 50]]

可见,当a和b为array时, a * b 计算了a和b的数量积(对应Matlab的 a .* b ), dot(a, b) 计算了a和b的矢量积(对应Matlab的 a * b )。

与array不同的是,使用matrix时,运算符 * 用于计算矢量积,函数 multiply() 用于计算数量积,例子如:

import numpy as np

a = np.mat('1 2; 3 4')
b = np.mat('5 6; 7 8');

print 'a * b = \n', a * b
print 'multiply(a, b) = \n', np.multiply(a, b)

运行结果:

a * b = 
[[19 22]
 [43 50]]
multiply(a, b) = 
[[ 5 12]
 [21 32]]

可见,当a和b为matrix时, a * b 计算了a和b的矢量积,与 multiply(a, b) 计算了a和b的数量积。当使用matrix时,无论是生成矩阵还是计算,Numpy的风格和Matlab更加贴近,降低了语言切换时的负担。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值