看《机器学习实战》中的第六章SVM,编程时array和matrix的乘法看的有点混乱,找到一篇博客觉得写的还比较清楚————转载自nex3z’s blog
NumPy中array和matrix用于矩阵乘法时的区别
在NumPy中,array用于表示通用的N维数组,matrix则特定用于线性代数计算。array和matrix都可以用来表示矩阵,二者在进行乘法操作时,有一些不同之处。
用array时,运算符 * 用于计算数量积(点乘),函数 dot() 用于计算矢量积(叉乘),例子如:
import numpy as np
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])
print 'a * b = \n', a * b
print 'dot(a, b) = \n', np.dot(a, b)
运行结果:
a * b =
[[ 5 12]
[21 32]]
dot(a, b) =
[[19 22]
[43 50]]
可见,当a和b为array时, a * b 计算了a和b的数量积(对应Matlab的 a .* b ), dot(a, b) 计算了a和b的矢量积(对应Matlab的 a * b )。
与array不同的是,使用matrix时,运算符 * 用于计算矢量积,函数 multiply() 用于计算数量积,例子如:
import numpy as np
a = np.mat('1 2; 3 4')
b = np.mat('5 6; 7 8');
print 'a * b = \n', a * b
print 'multiply(a, b) = \n', np.multiply(a, b)
运行结果:
a * b =
[[19 22]
[43 50]]
multiply(a, b) =
[[ 5 12]
[21 32]]
可见,当a和b为matrix时, a * b 计算了a和b的矢量积,与 multiply(a, b) 计算了a和b的数量积。当使用matrix时,无论是生成矩阵还是计算,Numpy的风格和Matlab更加贴近,降低了语言切换时的负担。