CPT: Efficient Deep Neural Network Training via Cyclic Precision

论文地址
代码地址

论文背景

  • Yonggan Fu, Han Guo, Xin Yang, Yining Ding & Yingyan Lin
    电子与计算机工程系, 莱斯大学

  • Meng Li & Vikas Chandra, Facebook

看起来都是中国人, 不过都是国外的大学和公司

  • 期刊/会议: 发表在ICLR 2021

贡献

提出了循环精度训练(CPT),以循环改变两个边界值之间的精度,这两个边界可以在前几轮训练时, 使用简单的精度范围测试来识别.

  • 和学习率类似, 可以使用动态精度来训练模型, 大学习率对应低精度帮助更好的泛化以及寻找更优的解, 小学习率对应高精度, 可以提准确率帮助模型收敛. (感觉也有道理, 当精度变低时, 每次调整时的步长也会不一样, 跟lr的作用确实有点类似)
  • 提出循环精度训练(Cyclic Precision Training , CPT), 寻找精度和训练效率的trade off. 并且循环精度的边界是可以通过简单的精度范围测试来获取.Precision Range Test (PRT)
  • 在分类和语言模型上得到验证, 另外还可视化了loss.

验证猜想

表 1

  • Hypothesis 1: DNN’s pre

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值