论文背景
-
Yonggan Fu, Han Guo, Xin Yang, Yining Ding & Yingyan Lin
电子与计算机工程系, 莱斯大学 -
Meng Li & Vikas Chandra, Facebook
看起来都是中国人, 不过都是国外的大学和公司
- 期刊/会议: 发表在ICLR 2021
贡献
提出了循环精度训练(CPT),以循环改变两个边界值之间的精度,这两个边界可以在前几轮训练时, 使用简单的精度范围测试来识别.
- 和学习率类似, 可以使用动态精度来训练模型, 大学习率对应低精度帮助更好的泛化以及寻找更优的解, 小学习率对应高精度, 可以提准确率帮助模型收敛. (感觉也有道理, 当精度变低时, 每次调整时的步长也会不一样, 跟lr的作用确实有点类似)
- 提出循环精度训练(Cyclic Precision Training , CPT), 寻找精度和训练效率的trade off. 并且循环精度的边界是可以通过简单的精度范围测试来获取.Precision Range Test (PRT)
- 在分类和语言模型上得到验证, 另外还可视化了loss.
验证猜想
-
Hypothesis 1: DNN’s pre