一.聚类分析cluster Analysis)是研究物以类聚的现代统计方法。在过去是依靠经验和专业知识做定性分析处理,很少利用数学方法多元统计分析逐渐被引进数值分类,形成聚类分析的分支。
思想:认为所研究的样本或指标(变量)之间存在着不同程度的相似性(亲疏关系)。于是根据一批样本的多个观测值指标,具体找出可以度量样本之间相似的统计量,以这些统计量作为划分类型的依据,把一些相似程度较大的样本聚合为一类,把另外一些彼此之间相似程度较大的样本又聚为一类,关系密切的聚合完毕,把不同类型的一一划分起来形成小到大的分类系统。
分型:Q型聚类:对样本的聚类;R型聚类:对变量的聚类
聚类统计量:1.距离:欧式距离,马氏距离,兰氏距离2.相似系数。(推理过程不展开了,可以网上搜索)
二.系统聚类法
(1)基本思想:确定了距离和相似系数后就要进行分类,有多种分类方法,最常用是样品自成一类,然后把每次具有最小距离的两类进行合并,合并后继续计算类与类之间的距离,这个过程是一直持续到把所有样本归为一类,并把这个过程作成一张聚类图,由聚类图进行方便的分类。
(1)最短距离法(single):类与类之间的距离等于两类之间最靠近样本的距离。
(2) 最长距离法(complete):类与类之间的距离等于两类之间最远样本之间的距离。
(3)中间距离法(median):最长距离夸大了类间的距离,最短距离低估了类间距离。介于两者之间的距离称为中间距离。
(4)类平均法(average):类与类之间的距离等于各元素的两两之间的平方距离。
(5)重心法(centroid):定义为重心的距离
(6)离差平方和法(ward)基于方差分析,如果分类正确,那么同类之间的离差平方和会非常小,反之,则比较大。
三.基本步骤:
(1)计算距离阵
计算n个样品之间的两两距离D
(2)进行系统聚类
构造n个类,每个类只包含一个样本