聚类分析以及k-means的优缺点

一.聚类分析cluster Analysis)是研究物以类聚的现代统计方法。在过去是依靠经验和专业知识做定性分析处理,很少利用数学方法多元统计分析逐渐被引进数值分类,形成聚类分析的分支。

思想:认为所研究的样本或指标(变量)之间存在着不同程度的相似性(亲疏关系)。于是根据一批样本的多个观测值指标,具体找出可以度量样本之间相似的统计量,以这些统计量作为划分类型的依据,把一些相似程度较大的样本聚合为一类,把另外一些彼此之间相似程度较大的样本又聚为一类,关系密切的聚合完毕,把不同类型的一一划分起来形成小到大的分类系统。

分型:Q型聚类:对样本的聚类;R型聚类:对变量的聚类

聚类统计量:1.距离:欧式距离,马氏距离,兰氏距离2.相似系数。(推理过程不展开了,可以网上搜索)

二.系统聚类法

(1)基本思想:确定了距离和相似系数后就要进行分类,有多种分类方法,最常用是样品自成一类,然后把每次具有最小距离的两类进行合并,合并后继续计算类与类之间的距离,这个过程是一直持续到把所有样本归为一类,并把这个过程作成一张聚类图,由聚类图进行方便的分类。

(1)最短距离法(single):类与类之间的距离等于两类之间最靠近样本的距离。

  (2) 最长距离法(complete):类与类之间的距离等于两类之间最远样本之间的距离。

(3)中间距离法(median):最长距离夸大了类间的距离,最短距离低估了类间距离。介于两者之间的距离称为中间距离。

(4)类平均法(average):类与类之间的距离等于各元素的两两之间的平方距离。

(5)重心法(centroid):定义为重心的距离

(6)离差平方和法(ward)基于方差分析,如果分类正确,那么同类之间的离差平方和会非常小,反之,则比较大。

三.基本步骤:

 (1)计算距离阵

计算n个样品之间的两两距离D

(2)进行系统聚类

构造n个类,每个类只包含一个样本࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xifenglie123321

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值