Lesson1: 算法的时间复杂度和空间复杂度

目录

1.算法效率

1.1 如何衡量一个算法的好坏

1.2算法的复杂度 

2.时间复杂度 

2.1 时间复杂度的概念

 2.2 大O的渐进表示法

 2.3常见时间复杂度计算举例

3.空间复杂度

4. 常见复杂度对比

5. 复杂度的oj练习 


1.算法效率

1.1 如何衡量一个算法的好坏

看程序的算法复杂度

1.2算法的复杂度 

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源

因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。

在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.时间复杂度 

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i) 
{
    for (int j = 0; j < N ; ++ j) 
    {
    ++count;
    }
}

for (int k = 0; k < 2 * N ; ++ k) 
{
    ++count;
}

int M = 10;
while (M--)
{
    ++count;
}
    printf("%d\n", count);
}

 2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:

O(N^{2})

  • N = 10 F(N) = 100
  • N = 100  F(N) = 10000
  • N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

 例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

 2.3常见时间复杂度计算举例

  • // 计算Func2的时间复杂度?
    void Func2(int N)
    {
        int count = 0;
        for (int k = 0; k < 2 * N ; ++ k) 
        {
        ++count;//2N次
        }
        int M = 10;
    
    while (M--)//10次
    {
        ++count;
    }
        printf("%d\n", count);
    }

2N+10

去掉项数和常数项

时间复杂度为:O(N) 

  • // 计算Func3的时间复杂度?
    void Func3(int N, int M)
    {
        int count = 0;
        for (int k = 0; k < M; ++ k) 
        {
        ++count;
        }
        for (int k = 0; k < N ; ++ k) 
        {
        ++count;
        }
        printf("%d\n", count);
    }

 这里没有说明M和N的关系

M<N的话-->O(N)

M>N的话-->O(M)

M和N差不多-->要么O(N)或者O(M)==>O(N)

  • // 计算Func4的时间复杂度?
    void Func4(int N)
    {
        int count = 0;
        for (int k = 0; k < 100; ++ k)
        {
        ++count;
        }
        //运行了100次
        printf("%d\n", count);
    }

 虽然了运行了100次,但这代表常数次,所以

时间复杂度O(1)

  •  

 

  • // 计算BubbleSort的时间复杂度?
    void BubbleSort(int* a, int n)
    {
        assert(a);
        for(size_t end = n; end > 0; --end)//N次
        {
            int exchange = 0;
            for(size_t i = 1; i < end; ++i)//N-1次
            {
                if(a[i-1] > a[i])
                {
                    Swap(&a[i-1], &a[i]);
                    exchange = 1;
                }
            }
    
            if (exchange == 0) break;
        }
    }
    //因为嵌入for循环
    

为N(N-)/2

留下最大的项-->O(N^{2})时间复杂度

  • // 计算BinarySearch的时间复杂度?
    int BinarySearch(int* a, int n, int x)
    {
        assert(a);
        int begin = 0;
        nt end = n-1;
        while (begin < end)
        {
            int mid = begin + ((end-begin)>>1);
            if (a[mid] < x)
                begin = mid+1;
            else if (a[mid] > x)
                end = mid;
            else
                return mid;
        }
        return -1;
    }

 

 最坏的情况:

1.最后一个元素才找到

2.压根找不到

  • // 计算阶乘递归Fac的时间复杂度? 
    
    long long Fac(size_t N)
    {
        if(0 == N)
        return 1;
        return Fac(N-1)*N;
    }

 

  • // 计算斐波那契递归Fib的时间复杂度? 
    long long Fib(size_t N)
    {
        if(N < 3)
            return 1;
        return Fib(N-1) + Fib(N-2);
    }
    
    //斐波那契额数列的递归写法是一个垃圾算法 因为太慢了

 

 

时间复杂度为:2^{N} 

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时额外占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。


注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定

 实例1:使用了常数个额外空间,所以空间复杂度为 O(1)

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for(size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange=1;
            }
        }
        if (exchange == 0)
            break;
    }
}

 

 实例2:动态开辟了N个空间,空间复杂度为 O(N)

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
    if(n==0)
        return NULL;
    long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; ++i)
    {
        fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }
    return fibArray;
}

实例3:递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
    if(N == 0)
    return 1;
    return Fac(N-1)*N;
}

4. 常见复杂度对比

一般算法常见的复杂度如下:

 

5. 复杂度的oj练习 

消失的数字和轮转数组_xiguazkb123的博客-CSDN博客

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值