题目
给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
思路
可能有同学会采用循环暴力求解,但是这不是本题要的思路。这里道题用了一个代码上非常简单的解法。但是对于其算法正确性的证明,却是比较复杂。这里先给出代码及说明。之后再给出算法的证明。
代码
public class _11ContainerWithMostWater{
public int maxArea(int[] height){
int i = 0;
int j = height.length-1;
int area = 0;
int areaNow = 0;
while(i!=j){
areaNow = Math.min(height[i],height[j])*(j-i);
area = Math.max(area,areaNow);
if(height[i]<=height[j]){
i++;
}else{
j--;
}
}
return area;
}
public static void main(String[] arg){
_11ContainerWithMostWater ContainerWithMostWater =
new _11ContainerWithMostWater();
int[] height = {1,8,6,2,5,4,8,3,7};
int area = ContainerWithMostWater.maxArea(height);
System.out.println(area);
}
}
解题思路是由两侧向中间逼近,每次移动的坐标是高度值较小的那个。统计移动过程中的最大值。