在配置完caffe的python接口后,运行mnist 的测试
http://www.cnblogs.com/linyuanzhou/p/6012231.html
提示信息如下:
***Check failure stack trace***
弄了一个下午都不知道什么原因,后来猜测是不是数据没有下载,然后下载数据。
参考官方文件:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/01-learning-lenet.ipynb
他人博客:http://blog.csdn.net/qq_14845119/article/details/52415090
# Download data !data/mnist/get_mnist.sh # Prepare data !examples/mnist/create_mnist.sh
参考上述两个文档,用txt打开
下载和准备数据
1)下载数据
http://yann.lecun.com/exdb/mnist/
共有4组数据:
将4个文件解压到你的caffe目录下,例如:..\caffe-master\data\mnist
2)准备数据
将数据改成lmdb数据文件
可在caffe根目录下创建.dat文件,内容如下:
.\Build\x64\Release\convert_mnist_data.exe .\data\mnist\train-images.idx3-ubyte .\data\mnist\train-labels.idx1-ubyte .\examples\mnist\mnist_train_lmdb
echo.
.\Build\x64\Release\convert_mnist_data.exe .\data\mnist\t10k-images.idx3-ubyte .\data\mnist\t10k-labels.idx1-ubyte .\examples\mnist\mnist_test_lmdb
pause
成功后进行数据训练,如果不成功请查看自己的文件夹是否正确。
3)训练和测试
训练直接同上面修改数据一下,建立.mat文件,注意lenet_solver.prototxt 文件中的solver的mode设置GPU/CPU,无GPU设置成CPU,内容如下:
.\Build\x64\Release\caffe.exe train --solver=.\examples\mnist\lenet_solver.prototxt
pause
会跳出虚拟程序台进行数据训练
或者
在Python中利用一开始提及的测试文件进行mnist测试,结果如http://www.cnblogs.com/linyuanzhou/p/6012231.html所示
在Python中进一步调用,参考官方文件:
http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/01-learning-lenet.ipynb
本文只提及文件中所提的下载和准备数据的内容。
Have a good night!