https://www.luogu.org/problem/P1484
题目描述
cyrcyr今天在种树,他在一条直线上挖了n个坑。这n个坑都可以种树,但为了保证每一棵树都有充足的养料,cyrcyr不会在相邻的两个坑中种树。而且由于cyrcyr的树种不够,他至多会种k棵树。假设cyrcyr有某种神能力,能预知自己在某个坑种树的获利会是多少(可能为负),请你帮助他计算出他的最大获利。
输入格式
第一行,两个正整数n,k。
第二行,n个正整数,第i个数表示在直线上从左往右数第i个坑种树的获利。
输出格式
输出1个数,表示cyrcyr种树的最大获利。
思路: d p dp dp思路: f [ i ] [ j ] f[i][j] f[i][j]表示种到第 i i i棵树且种了 j j j棵的最大获利,则 f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 2 ] [ j − 1 ] + a [ i ] ) f[i][j]=max(f[i-1][j],f[i-2][j-1]+a[i]) f[i][j]=max(f[i−1][j],f[i−2][j−1]+a[i]),然而这题数据范围太大了, d p dp dp写不了。贪心的想一下,建一个大根堆,我们肯定想去当前堆种最大的那个元素,假设它是第 i i i个元素,然而这样不一定正确,比如 a [ i ] < a [ i − 1 ] + a [ i + 1 ] a[i]<a[i-1]+a[i+1] a[i]<a[i−1]+a[i+1]的时候,可能选取 i i i左右两侧的元素反而是更优的,因此我们需要给贪心一个可以反悔的余地,拿出 a [ i ] a[i] a[i]后,标记与 a [ i ] a[i] a[i]相邻的元素为不可再选,同时修改 a [ i ] a[i] a[i]的权值为: a [ i − 1 ] + a [ i + 1 ] − a [ i ] a[i-1]+a[i+1]-a[i] a[i−1]+a[i+1]−a[i],这样如果某次取出了这个元素,就相当于反悔了。
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pr pair<int,int>
using namespace std;
typedef long long ll;
const int maxn=5e5+5;
struct node
{
int id,v;
node(int i,int vv)
{
id=i,v=vv;
}
bool operator <(const node &a)const
{
return v<a.v;
}
};
int lt[maxn],rt[maxn],a[maxn];
bool vis[maxn];
int n,k;
int main()
{
scanf("%d %d",&n,&k);
priority_queue<node> q;
rt[0]=1,lt[n+1]=n;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
q.push(node(i,a[i]));
lt[i]=i-1;//i左侧的元素的位置
rt[i]=i+1;//i右侧的元素的位置
}
node tmp(0,0);
ll ans=0;
while(k--)
{
while(vis[q.top().id])//这个位置不能种树了
q.pop();
tmp=q.top();
q.pop();
if(tmp.v<=0)
break;
ans+=tmp.v;
int id=tmp.id;
vis[lt[id]]=vis[rt[id]]=1;//标记相邻元素
a[id]=a[lt[id]]+a[rt[id]]-a[id];//修改a[i]权值
q.push(node(id,a[id]));//并放入队列中
lt[id]=lt[lt[id]];//修改位置
rt[lt[id]]=id;
rt[id]=rt[rt[id]];
lt[rt[id]]=id;
}
printf("%lld\n",ans);
return 0;
}