洛谷 P1198 [JSOI2008]最大数 线段树

https://www.luogu.org/problem/P1198
题目描述
现在请求你维护一个数列,要求提供以下两种操作:
1、 查询操作。
语法:Q L
功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。
限制:L不超过当前数列的长度。(L>0)
2、 插入操作。
语法:A n
功能:将n加上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则(t=0),并将所得结果对一个固定的常数D取模,将所得答案插入到数列的末尾。
限制:n是整数(可能为负数)并且在长整范围内。
注意:初始时数列是空的,没有一个数。
输入格式
第一行两个整数,M和D,其中M表示操作的个数(M≤200,000),D如上文中所述,满足(0<D<2,000,000,000)接下来的M行,每行一个字符串,描述一个具体的操作。语法如上文所述。
输出格式
对于每一个查询操作,你应该按照顺序依次输出结果,每个结果占一行。

思路:线段树随便写。

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pr pair<int,int>
using namespace std;
typedef long long ll;

const int maxn=2e5+5;

struct node
{
    int l,r;
    ll MAX;
}tree[maxn<<2];

int n;
char op[10];

void build(int i,int l,int r)
{
    tree[i].l=l,tree[i].r=r,tree[i].MAX=-1e16;
    if(l==r)
        return ;
    int mid=l+r>>1;
    build(i<<1,l,mid);
    build(i<<1|1,mid+1,r);
}

void update(int i,int pos,ll v)
{
    if(tree[i].l==tree[i].r&&tree[i].l==pos)
    {
        tree[i].MAX=v;
        return ;
    }
    int mid=tree[i].l+tree[i].r>>1;
    if(pos<=mid)
        update(i<<1,pos,v);
    else
        update(i<<1|1,pos,v);
    tree[i].MAX=max(tree[i<<1].MAX,tree[i<<1|1].MAX);
}

ll query(int i,int l,int r)
{
    if(tree[i].l==l&&tree[i].r==r)
        return tree[i].MAX;
    int mid=tree[i].l+tree[i].r>>1;
    if(r<=mid)
        return query(i<<1,l,r);
    else if(l>mid)
        return query(i<<1|1,l,r);
    else
        return max(query(i<<1,l,mid),query(i<<1|1,mid+1,r));
}

int main()
{
    ll mod;
    scanf("%d %lld",&n,&mod);
    build(1,1,n);
    int len=0;
    ll v,pre=0;
    for(int i=1;i<=n;i++)
    {
        scanf("%s %lld",op,&v);
        if(op[0]=='A')
        {
            v=(v+pre)%mod;
            update(1,++len,v);
        }
        else
            printf("%lld\n",pre=query(1,len-v+1,len));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值