codeforces 1051D Bicolorings 状压dp

https://codeforces.com/problemset/problem/1051/D
在这里插入图片描述
题目大意:给一个 2 ∗ n 2*n 2n的矩阵,每一个位置要么为黑色要么为白色,相邻且颜色相同的方块算作一个连通块,给定 k k k,问有多少种着色方法使得这个矩阵中恰好有 k k k个连通块。
思路:比较容易想到用 d p dp dp来做,考虑用 d p [ i ] [ j ] dp[i][j] dp[i][j]表示前 i i i列中连通块个数为 j j j时的着色方案数,但是这样比较难写出转移方程,然后因为这个矩阵只有两行,所以我们可以再多加一维来表示第 i i i列的状态,也就是用 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]表示前 i i i列连通块个数为 j j j且第 i i i列状态为 k k k时的着色方案数。其中 k = 0 、 1 、 2 、 3 k=0、1、2、3 k=0123,若用 0 0 0表示该位置为白色, 1 1 1表示该位置为黑色,则 k = 0 k=0 k=0代表该列状态为 00 00 00 k = 1 k=1 k=1代表 01 01 01 k = 2 k=2 k=2代表 10 10 10 k = 3 k=3 k=3代表 11 11 11,这样就很好写出转移方程了。(代码中第二维和第三维交换了一下)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

const int mod=998244353;
const int maxn=1005;

int n,k;
ll dp[maxn][4][maxn<<1];

int main()
{
    scanf("%d%d",&n,&k);
    dp[1][0][1]=dp[1][1][2]=dp[1][2][2]=dp[1][3][1]=1;
    for(int i=2;i<=n;i++)
    {
        int t=2*i;
        for(int j=1;j<=t;j++)
        {
            dp[i][0][j]=dp[i-1][0][j]+dp[i-1][1][j]+dp[i-1][2][j];
            dp[i][1][j]=dp[i-1][1][j];
            dp[i][2][j]=dp[i-1][2][j];
            dp[i][3][j]=dp[i-1][1][j]+dp[i-1][2][j]+dp[i-1][3][j];
            if(j>=2)
            {
                dp[i][1][j]+=dp[i-1][0][j-1],dp[i][2][j]+=dp[i-1][0][j-1],dp[i][3][j]+=dp[i-1][0][j-1];
                dp[i][0][j]+=dp[i-1][0][j-1],dp[i][1][j]+=dp[i-1][0][j-1],dp[i][2][j]+=dp[i-1][0][j-1];
            }
            if(j>=3)
            {
                dp[i][2][j]+=dp[i-1][1][j-2];
                dp[i][1][j]+=dp[i-1][2][j-2];
            }
            for(int t=0;t<=3;t++)
                if(dp[i][t][j]>=mod)
                    dp[i][t][j]%=mod;
        }
    }
    ll ans=0;
    ans=dp[n][0][k]+dp[n][1][k]+dp[n][2][k]+dp[n][3][k];
    ans%=mod;
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值