HDU 6252 Subway Chasing 差分约束

https://vjudge.net/problem/HDU-6252
在这里插入图片描述题目大意: n n n个车站, m m m个条件 A 、 B 、 C 、 D A、B、C、D ABCD,如果 A = B A=B A=B,那么小明就在车站 A A A,否则小明在车站 A 、 B A、B AB之间, C 、 D C、D CD同理。整个过程中小花和小明的距离始终为 X X X,问能否找到满足限制的车站距离。

思路:差分约束,推一下式子可以发现,当 A = B & & C = D A=B\&\&C=D A=B&&C=D时,要满足 d [ C ] − d [ B ] = X d[C]-d[B]=X d[C]d[B]=X,否则要满足 d [ D ] − d [ A ] > = X + 1 d[D]-d[A]>=X+1 d[D]d[A]>=X+1 d [ C ] − d [ B ] < = X − 1 d[C]-d[B]<=X-1 d[C]d[B]<=X1。因为车站肯定不会在同意个位置,所以有 d [ i ] − d [ i − 1 ] > = 1 d[i]-d[i-1]>=1 d[i]d[i1]>=1。转换一下式子后,跑一遍最长路就可以了。
t i p s : tips: tips跑最短路也可以,注意把边都取反,起点和终点也要取反。

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pr pair<int,int>
using namespace std;
typedef long long ll;

const int maxn=2005;
const int maxm=10005;

struct Edge
{
    int to,nxt,dis;
}edge[maxm];

int n,m,tot;
int head[maxn],vis[maxn],dis[maxn],cnt[maxn];

inline void addedge(int u,int v,int dis)
{
    edge[++tot].to=v,edge[tot].nxt=head[u],edge[tot].dis=dis,head[u]=tot;
}

bool spfa()
{
    for(int i=1;i<=n;i++)
    {
        dis[i]=-2000000001;
        cnt[i]=vis[i]=0;
    }
    dis[1]=0,vis[1]=cnt[1]=1;
    queue<int> q;
    q.push(1);
    int u,v;
    while(!q.empty())
    {
        u=q.front();
        q.pop();
        vis[u]=0;
        for(int i=head[u];i;i=edge[i].nxt)
        {
            v=edge[i].to;
            if(dis[v]<dis[u]+edge[i].dis)
            {
                dis[v]=dis[u]+edge[i].dis;
                if(!vis[v])
                {
                    q.push(v),vis[v]=1;
                    if(++cnt[v]>=n)
                        return 0;
                }
            }
        }
    }
    return 1;
}

int main()
{
    int t,times=0;
    scanf("%d",&t);
    while(t--)
    {
        int a,b,c,d,x;
        scanf("%d%d%d",&n,&m,&x);
        for(int i=1;i<=n;i++)
            head[i]=0;
        tot=0;
        for(int i=1;i<n;i++)
            addedge(i,i+1,1);
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d%d",&a,&b,&c,&d);
            if(a==b&&c==d)
                addedge(a,d,x),addedge(c,b,-x);
            else
                addedge(a,d,x+1),addedge(c,b,-x+1);
        }
        printf("Case #%d:",++times);
        if(!spfa())
            printf(" IMPOSSIBLE\n");
        else
        {
            for(int i=2;i<=n;i++)
                printf(" %d",dis[i]-dis[i-1]);
            printf("\n");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值