PIPIOJ 1476: PIPI的字符串问题X 二分 字符串哈希

http://www.pipioj.online/problem.php?id=1476
在这里插入图片描述
思路:通过字符串哈希,可以在 O ( n ) O(n) O(n)复杂度内计算出长度为 l e n len len的所有 s 1 s_1 s1的子串的哈希值,将其用哈希表存起来,那么就可以在 O ( n ) O(n) O(n)复杂度内判断 s 1 、 s 2 s_1、s_2 s1s2是否有公共子串。二分公共子串的长度,复杂度 O ( n l g n ) O(nlgn) O(nlgn)

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;

using ull=unsigned long long;

const int maxn=1e5+5;
const int bs=127;

int n;
char s1[maxn],s2[maxn];
ull s1hash[maxn],s2hash[maxn],base[maxn];

inline bool check(int len)
{
    unordered_map<ull,bool> hs;
    ull tmp=s1hash[len];
    for(int i=len;i<n;i++)
    {
        hs[tmp]=1;
        tmp=(tmp-s1[i-len]*base[len-1])*bs+s1[i];
    }
    hs[tmp]=1;
    tmp=s2hash[len];
    for(int i=len;i<n;i++)
    {
        if(hs.count(tmp))
            return 1;
        tmp=(tmp-s2[i-len]*base[len-1])*bs+s2[i];
    }
    return hs.count(tmp);
}

int main()
{
    base[0]=1;
    scanf("%d%s%s",&n,s1,s2);
    for(int i=1;i<=n;i++)
        s1hash[i]=s1hash[i-1]*bs+s1[i-1];
    for(int i=1;i<=n;i++)
    {
        s2hash[i]=s2hash[i-1]*bs+s2[i-1];
        base[i]=base[i-1]*bs;
    }
    int l=0,r=n,mid;
    while(l<=r)
    {
        mid=(l+r)>>1;
        if(check(mid))
            l=mid+1;
        else
            r=mid-1;
    }
    printf("%d\n",r);
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值