http://acm.hdu.edu.cn/showproblem.php?pid=2064
约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。
现在我们改变游戏的玩法,不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允许大盘放到下盘的上面。
Daisy已经做过原来的汉诺塔问题和汉诺塔II,但碰到这个问题时,她想了很久都不能解决,现在请你帮助她。现在有N个圆盘,她至少多少次移动才能把这些圆盘从最左边移到最右边?
Input
包含多组数据,每次输入一个N值(1<=N=35)。
Output
对于每组数据,输出移动最小的次数。
Sample Input
1 3 12
Sample Output
2 26 531440
思路:(1)找规律喽,写前三项就能猜出来,样例还给的这么好。(2)设F[n]表示把n个盘子经过B堆到C上的步骤数,那么要先把最上面的n-1个盘子经过B堆到C上,F[n-1];第二步把最大的盘子移到B上,1;第三步,把n-1个盘子经过B堆到A上,F[n-1];第四步,把最大的盘子移到C上,1;第五部,把n-1个盘子经过B堆到C上。综上F[n]=3*F[n-1]+2。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<set>
#include<algorithm>
#include<iterator>
#define INF 0x3f3f3f3f
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
ll f[40];
int main()
{
f[1]=3;
for(int i=2;i<=35;i++)
f[i]=3*f[i-1];
int n;
while(~scanf("%d",&n))
printf("%lld\n",f[n]-1);
return 0;
}