分块

写在前面:

以前从来没用过分块,只是偶尔听大佬说过。最近训练学了分块,然而并没有听明白qt讲的东西。(还是太菜了orz)所以我决定从入门题开始,好好学习一下分块。哦对,莫队也没听懂orz。

什么是分块:

顾名思义,分块就是把一个序列分成若干块来处理,维护好每一块的信息。

分块可以做什么:

分块可以处理很多区间问题,虽然复杂度要比树状数组和线段树要高,但是代码比较简短、思想直观形象。

为什么要用分块:

分块是用来处理区间问题的,有的题目会感觉其他数据结构也很难下手。(可能是我菜)这时候可能就需要分块了。分块是优雅的暴力,有线段树、树状数组的底子应该还是蛮好理解的。(以下题目每个块的元素个数均为sqrt(n) 最后一个块的元素可能没有这么多)

分块的操作:

分块的操作一般是维护和查询,一个对于[l,r]的操作,对于在该区间内的完整的块,我们直接维护整个块的信息;对于两侧不完整的部分,我们暴力修改每个点的信息。写分块的关键就是想好如何维护和查询。

先介绍分块中几个常用的数组以及初始化:

int a[50005];//原始序列
int l[2000];//第i个块的左区间端点
int r[2000];//第i个块的右区间端点
int pos[50005];//第i个点属于第几个块

int n;
scanf("%d",&n);
int dis=sqrt(n);//每一块的大小
int num=ceil(n*1.0/dis);//分块数目
for(int i=1;i<=num;i++)
{
	l[i]=(i-1)*dis+1;//第i个块的左区间端点
	r[i]=i*dis;//第i个块的右区间端点
}
r[num]=n;//最后一个块的右端点最大等于n
for(int i=1;i<=n;i++)
{
	scanf("%d",&a[i]);
	pos[i]=(i-1)/dis+1;//第i个数属于第几个块
}

注意下标是从1开始的,大家看注释应该就懂了。然后就不多说了,上一些入门题吧。

LOJ 6277

给出一个长为n的数列,以及n个操作,操作涉及区间加法,单点查值。

思路:区间加法肯定不能暴力修改,学过线段树的区间修改的应该都知道lazy标记,我们借用这个思想,对于要修改的[l,r]区间内的完整的块,我们直接给lazy数组打上标记,两侧的不完整部分暴力修改即可。单点查询就不说了吧,非常简单。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#define INF 0x3f3f3f3f
using namespace std;

int a[50005];//原始序列
int l[2000];//第i个块的左区间端点
int r[2000];//第i个块的右区间端点
int pos[50005];//第i个点属于第几个块
int lazy[2000];

void add(int ll,int rr,int v)
{
	int posl=pos[ll];//要修改的区间的左端点属于第几个块
	int posr=pos[rr];//要修改的区间的右端点属于第几个块
	if(posl==posr)//同一块中 暴力
	{
		for(int i=ll;i<=rr;i++)
			a[i]+=v;
	}
	else //不同块中
	{
		for(int i=ll;i<=r[posl];i++)//暴力修改左侧不完整的块
			a[i]+=v;
		for(int i=pos[ll]+1;i<=pos[rr]-1;i++)//修改中间完整的块 lazy标记
			lazy[i]+=v;
		for(int i=l[posr];i<=rr;i++)//暴力修改右侧不完整的块
			a[i]+=v;
	}
}

int query(int i)
{
	int posi=pos[i];
	if(lazy[posi])
		return a[i]+lazy[posi];
	else
		return a[i];
}

int main()
{
	int n;
	scanf("%d",&n);
	int dis=sqrt(n);//每一块的大小
	int num=ceil(n*1.0/dis);//分块数目
	for(int i=1;i<=num;i++)
	{
		l[i]=(i-1)*dis+1;//第i个块的左区间端点
		r[i]=i*dis;//第i个块的右区间端点
	}
	r[num]=n;//最后一个块的右端点最大等于n
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		pos[i]=(i-1)/dis+1;//第i个数属于第几个块
	}
	int t1,t2,t3,t4;
	for(int i=0;i<n;i++)
	{
		scanf("%d %d %d %d",&t1,&t2,&t3,&t4);
		if(t1==0)
			add(t2,t3,t4);
		else
			printf("%d\n",query(t3));
	}
	return 0;
}

LOJ 6278

给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的元素个数。

思路:区间加法同上,因为要询问区间内小于x的元素个数,我们copy一下原序列并进行排序,这样在完整的块内就可以利用lower_bound函数来快速得到答案。注意,因为修改操作是对原序列进行的,(区间是相对于原序列而说的)对完整的块没有影响,但是对不完整的块是有影响的,这时候暴力修改后应该对copy的序列重新赋值并排序。且在查询不完整的块的时候,用的是原序列的值而不是copy的序列的值。(理解这点很重要!)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#define INF 0x3f3f3f3f
using namespace std;

int a[50005];//原始序列
int b[50005];//进行操作的序列
int l[2000];//第i个块的左区间端点
int r[2000];//第i个块的右区间端点
int pos[50005];//第i个点属于第几个块
int lazy[2000];

void add(int ll,int rr,int v)
{
	int posl=pos[ll];
	int posr=pos[rr];
	if(posl==posr)
	{
		for(int i=ll;i<=rr;i++)
			a[i]+=v;	//可能会破坏单调性
		for(int i=l[posl];i<=r[posl];i++)
			b[i]=a[i];	//对 b 重新赋值并排序
		sort(b+l[posl],b+r[posl]+1);
	}
	else
	{
		for(int i=ll;i<=r[posl];i++)
			a[i]+=v;	//可能会破坏单调性
		for(int i=l[posl];i<=r[posl];i++)
			b[i]=a[i];	//对 b 重新赋值并排序
		sort(b+l[posl],b+r[posl]+1);
		for(int i=pos[ll]+1;i<=pos[rr]-1;i++)
			lazy[i]+=v;	//完整的块打上标记 不要修改
		for(int i=l[posr];i<=rr;i++)
			a[i]+=v;	//可能会破坏单调性
		for(int i=l[posr];i<=r[posr];i++)
			b[i]=a[i];	//对 b 重新赋值并排序
		sort(b+l[posr],b+r[posr]+1);
	}
}

int query(int ll,int rr,int v)
{
	int posl=pos[ll];
	int posr=pos[rr];
	int cnt=0;
	if(posl==posr)
	{
		for(int i=ll;i<=rr;i++)	//不完整的块 对原序列进行操作
			if(a[i]<v-lazy[posl])
				++cnt;
		return cnt;
	}
	for(int i=ll;i<=r[posl];i++)
		if(a[i]<v-lazy[posl])//不完整的块 对原序列进行操作
			++cnt;
	for(int i=l[posr];i<=rr;i++)
		if(a[i]<v-lazy[posr])//不完整的块 对原序列进行操作
			++cnt;
	for(int i=pos[ll]+1;i<=pos[rr]-1;i++)	//完整的块 对 b 序列进行操作
		cnt+=lower_bound(b+l[i],b+r[i]+1,v-lazy[i])-(b+l[i]);
	return cnt;
}

int main()
{
	//freopen("a1.in","r",stdin);
	//freopen("a2.out","w",stdout);
	int n;
	scanf("%d",&n);
	int dis=sqrt(n);
	int num=ceil(n*1.0/dis);
	for(int i=1;i<=num;i++)
	{
		l[i]=(i-1)*dis+1;
		r[i]=i*dis;
	}
	r[num]=n;
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		b[i]=a[i];
		pos[i]=(i-1)/dis+1;
	}
	for(int i=1;i<=num;i++)
		sort(b+l[i],b+r[i]+1);
	int t1,t2,t3,t4;
	for(int i=0;i<n;i++)
	{
		scanf("%d %d %d %d",&t1,&t2,&t3,&t4);
		if(t1==0)
			add(t2,t3,t4);
		else
			printf("%d\n",query(t2,t3,t4*t4));
	}
	return 0;
}

LOJ 6279

给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的前驱(比其小的最大元素)。

思路:和上面那道题基本一样,只不过这个是找最大元素罢了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
using namespace std;

int a[100005];//原始序列
int b[100005];//进行操作的序列
int l[2000];//第i个块的左区间端点
int r[2000];//第i个块的右区间端点
int pos[100005];//第i个点属于第几个块
int lazy[2000];

int read()
{
	int temp=0,f=1;
	char ch=getchar();
	while(ch<'0'||ch>'9')
	{
		if(ch=='-')
			f=-1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9')
	{
		temp=temp*10+ch-48;
		ch=getchar();
	}
	return temp*f;
}

void add(int ll,int rr,int v)
{
	int posl=pos[ll];
	int posr=pos[rr];
	if(posl==posr)
	{
		for(int i=ll;i<=rr;i++)	//不完整的块 暴力
		{
			a[i]+=v;
			b[i]=a[i];
		}
		for(int i=l[posl];i<ll;i++)
			b[i]=a[i];
		for(int i=rr+1;i<=r[posl];i++)
			b[i]=a[i];
		sort(b+l[posl],b+r[posl]+1);
	}
	else
	{
		for(int i=ll;i<=r[posl];i++)	//不完整的块 暴力
		{
			a[i]+=v;
			b[i]=a[i];
		}
		for(int i=l[posl];i<ll;i++)
			b[i]=a[i];
		sort(b+l[posl],b+r[posl]+1);
		for(int i=pos[ll]+1;i<=pos[rr]-1;i++)//完整的块打上标记
			lazy[i]+=v;
		for(int i=l[posr];i<=rr;i++)//不完整的块 暴力
		{
			a[i]+=v;
			b[i]=a[i];
		}
		for(int i=rr+1;i<=r[posr];i++)
			b[i]=a[i];
		sort(b+l[posr],b+r[posr]+1);
	}
}

int query(int ll,int rr,int v)
{
	int MAX=-1;
	int posl=pos[ll];
	int posr=pos[rr];
	if(posl==posr)
	{
		for(int i=ll;i<=rr;i++)
			if(a[i]+lazy[posl]<v&&a[i]+lazy[posl]>MAX)
				MAX=a[i]+lazy[posl];
		return MAX;
	}
	for(int i=ll;i<=r[posl];i++)
			if(a[i]+lazy[posl]<v&&a[i]+lazy[posl]>MAX)
				MAX=a[i]+lazy[posl];
	for(int i=l[posr];i<=rr;i++)
		if(a[i]+lazy[posr]<v&&a[i]+lazy[posr]>MAX)
				MAX=a[i]+lazy[posr];
	int temp;
	for(int i=pos[ll]+1;i<=pos[rr]-1;i++)
	{
		temp=lower_bound(b+l[i],b+r[i]+1,v-lazy[i])-(b+l[i]);
		if(temp==0)//最小的元素都不满足题意
			continue;
		MAX=max(MAX,b[l[i]+temp-1]+lazy[i]);
	}
	return MAX;
}
int main()
{
	int n;
	n=read();
	int dis=sqrt(n);
	int num=ceil(n*1.0/dis);
	for(int i=1;i<=num;i++)
	{
		l[i]=(i-1)*dis+1;
		r[i]=i*dis;
	}
	r[num]=n;
	for(int i=1;i<=n;i++)
	{
		a[i]=read();
		pos[i]=(i-1)/dis+1;
		b[i]=a[i];
	}
	for(int i=1;i<=num;i++)
		sort(b+l[i],b+r[i]+1);
	int t1,t2,t3,t4;
	for(int i=0;i<n;i++)
	{
		t1=read();
		t2=read();
		t3=read();
		t4=read();
		if(t1==0)
			add(t2,t3,t4);
		else
			printf("%d\n",query(t2,t3,t4));
	}
	return 0;
}

LOJ 6280

给出一个长为n的数列,以及n个操作,操作涉及区间加法,区间求和。

思路:和第一道题其实差不多,就是多了一个sum数组来记录第i个块的元素之和罢了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
using namespace std;

typedef long long LL;

LL a[50005];//原始序列
int l[2000];//第i个块的左区间端点
int r[2000];//第i个块的右区间端点
LL sum[2000];//第i个块的元素之和
int pos[50005];//第i个点属于第几个块
LL lazy[2000];
int dis;

void add(int ll,int rr,int v)
{
	int posl=pos[ll];
	int posr=pos[rr];
	if(posl==posr)
	{
		for(int i=ll;i<=rr;i++)
		{
			a[i]+=v;
			sum[posl]+=v;
		}
	}
	else
	{
		for(int i=ll;i<=r[posl];i++)
		{
			a[i]+=v;
			sum[posl]+=v;
		}
		for(int i=pos[ll]+1;i<=pos[rr]-1;i++)
			lazy[i]+=v;
		for(int i=l[posr];i<=rr;i++)
		{
			a[i]+=v;
			sum[posr]+=v;
		}
	}
}

LL query(int ll,int rr,int c)
{
	int posl=pos[ll];
	int posr=pos[rr];
	if(posl==posr)
	{
		LL temp=0;
		for(int i=ll;i<=rr;i++)
			temp+=a[i]+lazy[posl];
		return temp%(c+1);
	}
	LL temp=0;
	for(int i=ll;i<=r[posl];i++)
		temp+=a[i]+lazy[posl];
	for(int i=pos[ll]+1;i<=pos[rr]-1;i++)
		temp+=sum[i]+lazy[i]*dis;
	for(int i=l[posr];i<=rr;i++)
		temp+=a[i]+lazy[posr];
	return temp%(c+1);
}

int main()
{
	//freopen("a4.in","r",stdin);
	//freopen("a5.out","w",stdout);
	int n;
	scanf("%d",&n);
	dis=sqrt(n);
	int num=ceil(n*1.0/dis);
	for(int i=1;i<=num;i++)
	{
		l[i]=(i-1)*dis+1;
		r[i]=i*dis;
	}
	r[num]=n;
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		pos[i]=(i-1)/dis+1;
		sum[pos[i]]+=a[i];
	}
	int t1,t2,t3,t4;
	for(int i=0;i<n;i++)
	{
		scanf("%d %d %d %d",&t1,&t2,&t3,&t4);
		if(t1==0)
			add(t2,t3,t4);
		else
			printf("%lld\n",query(t2,t3,t4));
	}
	return 0;
}

 

 

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值