洛谷P2633 Count on a tree 静态树链第k小(LCA+主席树)

https://www.luogu.org/problem/P2633
题目描述
给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor ans和v这两个节点间第K小的点权。其中ans是上一个询问的答案,初始为0,即第一个询问的u是明文。

思路:看到第k小就想到用主席树来做,关键是现在是求树链的第k小 ,怎么建主席树是一个问题。我们考虑在dfs的过程中建主席树,使节点u的树保存的是从根节点到u节点的信息,那么查询u到v路径的第k小需要用到四个点: u 、 v 、 L c a ( u , v ) 、 f a t h e r [ L c a ( u , v ) ] u、v、Lca(u,v)、father[Lca(u,v)] uvLca(u,v)father[Lca(u,v)]假设 g r a n d = L c a ( u , v ) , f g r a n d = f a t h e r [ L c a ( u , v ) ] grand=Lca(u,v),fgrand=father[Lca(u,v)] grand=Lca(u,v)fgrand=father[Lca(uv)]那么令 d i s = s u m [ l c [ u ] ] + s u m [ l c [ v ] ] − s u m [ l c [ g r a n d ] ] − s u m [ l c [ f g r a n d ] ] dis=sum[lc[u]]+sum[lc[v]]-sum[lc[grand]]-sum[lc[fgrand]] dis=sum[lc[u]]+sum[lc[v]]sum[lc[grand]]sum[lc[fgrand]]拿dis与k比较即可。(和一般的主席树查询操作一样)

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=1e5+5;

int n,nn,m,tot=0,cnt=0;
int rt[maxn],a[maxn],b[maxn],head[maxn];
int deep[maxn];
int fa[maxn][30];
int bs[30];

struct node
{
	int ls,rs,sum;
}tree[maxn*40];

struct edge
{
    int to,nxt;
}Edge[maxn<<1];

inline void addedge(int u,int v)
{
    Edge[++cnt].to=v,Edge[cnt].nxt=head[u],head[u]=cnt;
    Edge[++cnt].to=u,Edge[cnt].nxt=head[v],head[v]=cnt;
}

void insert(int &x,int y,int l,int r,int pos)
{
	tree[++tot]=tree[y];
	x=tot;
	++tree[x].sum;
	if(l==r)
        return;
	int mid=(l+r)>>1;
	if(pos<=mid)
		insert(tree[x].ls,tree[y].ls,l,mid,pos);
	else
		insert(tree[x].rs,tree[y].rs,mid+1,r,pos);
}

int query(int u,int v,int grand,int fgrand,int l,int r,int k)
{
    if(l==r)
        return l;
    int dis=tree[tree[u].ls].sum+tree[tree[v].ls].sum-tree[tree[grand].ls].sum-tree[tree[fgrand].ls].sum;
    int mid=(l+r)>>1;
    if(k<=dis)
        return query(tree[u].ls,tree[v].ls,tree[grand].ls,tree[fgrand].ls,l,mid,k);
    else
        return query(tree[u].rs,tree[v].rs,tree[grand].rs,tree[fgrand].rs,mid+1,r,k-dis);
}

void dfs(int cur,int father)
{
    insert(rt[cur],rt[father],1,nn,a[cur]);
    deep[cur]=deep[father]+1;
    fa[cur][0]=father;
	for(int i=1;i<=20;i++)
            fa[cur][i]=fa[fa[cur][i-1]][i-1];
    for(int i=head[cur];i;i=Edge[i].nxt)
        if(Edge[i].to!=father)
            dfs(Edge[i].to,cur);
}
inline int skip(int x,int level)
{
    for(int i=20;i>=0;i--)
    {
        if(bs[i]&level)
            x=fa[x][i];
    }
    return x;
}

inline int LCA(int u,int v)
{
    if(deep[u]<deep[v])
        swap(u,v);
    u=skip(u,deep[u]-deep[v]);
    if(u==v)
        return u;
    for(int i=20;i>=0;i--)
        if(fa[u][i]!=fa[v][i])
            u=fa[u][i],v=fa[v][i];
    return fa[u][0];
}

inline void prework()
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<=20;i++)
        bs[i]=1<<i;
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        b[i]=a[i];
    }
    sort(b+1,b+1+n);
    nn=unique(b+1,b+1+n)-b-1;
    for(int i=1;i<=n;i++)
        a[i]=lower_bound(b+1,b+1+nn,a[i])-b;
    int u,v;
    for(int i=1;i<n;i++)
    {
        scanf("%d%d",&u,&v);
        addedge(u,v);
    }
    dfs(1,0);
}

inline void mainwork()
{
    int u,v,k,ans=0,tmp,grand;
    for(int i=0;i<m;i++)
    {
        scanf("%d%d%d",&u,&v,&k);
        u^=ans;
        grand=LCA(u,v);
        tmp=b[query(rt[u],rt[v],rt[grand],rt[fa[grand][0]],1,nn,k)];
        printf("%d\n",tmp);
        ans=tmp;
    }
}

int main()
{
    prework();
    mainwork();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值