线性基解析及模板

博客:

https://blog.csdn.net/qaq__qaq/article/details/53812883

https://blog.sengxian.com/algorithms/linear-basis

模板:

例题(查询异或最大值)

#include<bits/stdc++.h>
#define ll long long
#define MAXN 10005
using namespace std;
int t,n,q;
ll k,tmp;

struct L_B
{
	ll b[65],p[65],gx[65],base[65];
	int cnt,flag;
	L_B()
	{
	    memset(gx,0,sizeof(gx));
		memset(p,0,sizeof(p));
		memset(b,0,sizeof(b));
		cnt=flag=0;
        for(int i=0;i<=62;i++)
            base[i]=1ll<<i;
    }
	inline bool insert(ll x)//向线性基中插入元素
	{
		for(int i=62;i>=0;--i)
			if(x&base[i])
			{
				if(b[i])
					x^=b[i];
				else
				{
					b[i]=x;
					return true;
				}
			}
		flag=1;//可异或得到0
		return false;
	}
	ll get_max()//求最大异或值
	{
		ll ret=0;
		for(int i=62;i>=0;--i)
			if((ret^b[i])>ret)
				ret^=b[i];
		return ret;
	}
	ll get_min()//求最小异或值
	{
		if(flag)
			return 0;
		for(int i=0;i<=62;++i)
			if(b[i])
				return b[i];
		return 0;
	}
	inline void rebuild()//重构 找第k小的前置步骤
	{
		for(int i=62;i>=1;--i)
			if(b[i])
				for(int j=i-1;j>=0;--j)
					if(b[i]&base[j])
						b[i]^=b[j];
		for(int i=0;i<=62;++i)
			if(b[i])
				p[cnt++]=b[i],gx[cnt-1]=i;
	}
	ll kth(ll k)//找第k小
	{
		if(flag)
			--k;
		if(k==0)
			return 0;
		ll ret=0;
		if(k>=base[cnt])
			return -1;
		for(int i=0;i<=cnt-1;++i)
			if(k&base[i])
				ret^=p[i];
		return ret;
	}
	ll getindex(ll v)//看v是异或和第几小
	{
	    ll ans=0;
	    if(flag)
            ++ans;
        for(int i=cnt-1;i>=0;i--)
            if(v&base[gx[i]])
                ans+=base[i];
        return ans;
	}
	void merge(L_B &n2)//把线性基n2 内的元素 逐一插入到线性基n1 中
    {
        flag|=n2.flag;
        for(int i=0;i<=62;++i)
            if(n2.b[i])
                insert(n2.b[i]);
    }
};

int main()
{
	L_B lis;
	int n;
	scanf("%d",&n);
	ll tmp;
	for(int i=0;i<n;i++)
    {
        scanf("%lld",&tmp);
        lis.insert(tmp);
    }
    printf("%lld\n",lis.get_max());
    return 0;
}

维护区间[l,r]的线性基:

例题

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
 
const int maxn=1e6+5;
int b[maxn][35],pos[maxn][35],base[35];
 
inline bool insert(int h,int x)//维护区间[1,h]内的线性基
{
    for(int i=0;i<=30;i++)
        b[h][i]=b[h-1][i],pos[h][i]=pos[h-1][i];
    int tmp=h;
    for(int i=30;i>=0;i--)
    {
        if(x&base[i])
        {
            if(b[h][i])
            {
                if(pos[h][i]<tmp)
                {
                    swap(pos[h][i],tmp);
                    swap(b[h][i],x);
                }
                x^=b[h][i];
            }
            else
            {
                b[h][i]=x;
                pos[h][i]=tmp;
                return 1;
            }
        }
    }
    return 0;
}
 
int get_max(int l,int r)//求区间[l,r]内的最大异或值
{
    int ans=0;
    for(int i=30;i>=0;i--)
        if(pos[r][i]>=l&&(ans^b[r][i])>ans)
            ans^=b[r][i];
    return ans;
}
 
int main()
{
    for(int i=0;i<=30;i++)
        base[i]=1ll<<i;
    int t;
    scanf("%d",&t);
    int n,m,op,l,r,ans=0;
    while(t--)
    {
        ans=0;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&op);
            insert(i,op);
        }
        for(int i=0;i<m;i++)
        {
            scanf("%d",&op);
            if(!op)
            {
                scanf("%d%d",&l,&r);
                l=(l^ans)%n+1;
                r=(r^ans)%n+1;
                if(l>r)
                    swap(l,r);
                ans=get_max(l,r);
                printf("%d\n",ans);
            }
            else
            {
                scanf("%d",&l);
                l^=ans;
                insert(++n,l);
            }
        }
    }
    return 0;
}

线性基的交:

例题

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;

const int maxn=5e4+5;

int n,m;
ll base[35];

struct L_B
{
	ll b[35];
	int l,r;
	L_B()
	{
		memset(b,0,sizeof(b));
    }
    inline bool insert(ll x)//向线性基中插入元素
	{
		for(int i=32;i>=0;--i)
			if(x&base[i])
			{
				if(b[i])
					x^=b[i];
				else
				{
					b[i]=x;
					return true;
				}
			}
		return false;
	}
}tree[maxn<<2];

L_B Merge(L_B A,L_B B)
{
    L_B All,C,D;
    for(int i=32;i>=0;i--)
    {
        All.b[i]=A.b[i];
        D.b[i]=1ll<<i;
    }
    for(int i=32;i>=0;i--)
    {
        if(B.b[i])
        {
            ll v=B.b[i],k=0;
            bool can=1;
            for(int j=32;j>=0;j--)
            {
                if(v&base[j])
                {
                    if(All.b[j])
                    {
                        v^=All.b[j];
                        k^=D.b[j];
                    }
                    else
                    {
                        can=0;
                        All.b[j]=v;
                        D.b[j]=k;
                        break;
                    }
                }
            }
            if(can)
            {
                ll v=0;
                for(int j=32;j>=0;j--)
                    if(k&base[j])
                        v^=A.b[j];
                C.insert(v);
            }
        }
    }
    C.l=A.l,C.r=B.r;
    return C;
}

void build(int i,int l,int r)
{
    tree[i].l=l,tree[i].r=r;
    if(l==r)
    {
        int t1;
        ll t2;
        scanf("%d",&t1);
        while(t1--)
        {
            scanf("%lld",&t2);
            tree[i].insert(t2);
        }
        return ;
    }
    int mid=(l+r)>>1;
    build(i<<1,l,mid);
    build(i<<1|1,mid+1,r);
    tree[i]=Merge(tree[i<<1],tree[i<<1|1]);
}

bool query(int i,int l,int r,ll v)
{
    if(tree[i].l==l&&tree[i].r==r)
    {
        for(int j=32;j>=0;j--)
            if(v&base[j])
                v^=tree[i].b[j];
        return v==0?1:0;
    }
    int mid=(tree[i].l+tree[i].r)>>1;
    if(r<=mid)
        return query(i<<1,l,r,v);
    else if(l>mid)
        return query(i<<1|1,l,r,v);
    else
        return query(i<<1,l,mid,v)&query(i<<1|1,mid+1,r,v);
}

inline void prework()
{
    for(int i=0;i<=32;i++)
        base[i]=1ll<<i;
    scanf("%d %d",&n,&m);
    build(1,1,n);
}

inline void mainwork()
{
    int l,r;
    ll v;
    for(int i=0;i<m;i++)
    {
        scanf("%d%d%lld",&l,&r,&v);
        printf("%s\n",query(1,l,r,v)==1?"YES":"NO");
    }
}

int main()
{
    prework();
    mainwork();
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值