损失函数、代价函数和目标函数的区别

损失函数:单个样本的误差 ( y i − f ( x i ) ) 2 (y_i-f(x_i))^2 (yif(xi))2

代价函数:所有样本的误差的平均值 1 n ∑ i = 1 n ( y i − f ( x i ) ) 2 \frac 1 n\sum_{i=1}^n(y_i-f(x_i))^2 n1i=1n(yif(xi))2

目标函数:最优化经验风险和结构风险 1 n ∑ i = 1 n ( y i − f ( x i ) ) 2 + λ J ( f ) \frac 1 n\sum_{i=1}^n(y_i-f(x_i))^2 + \lambda J(f) n1i=1n(yif(xi))2+λJ(f)

其中 1 n ∑ i = 1 n ( y i − f ( x i ) ) 2 \frac 1 n \sum_{i=1}^n(y_i-f(x_i))^2 n1i=1n(yif(xi))2是经验风险(等同于代价函数), J ( f ) J(f) J(f)是结构风险,专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有 L 1 L_1 L1, L 2 L_2 L2范数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值