机器学习之目标函数、损失函数、代价函数,有什么区别?

首先给出结论:损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,对于目标函数来说在有约束条件下的最小化就是损失函数(loss function)。

在这里插入图片描述
上面三个图的函数依次为 f 1 ( x ) f_1(x) f1(x) , f 2 ( x ) f_2(x) f2(x) , f 3 ( x ) f_3(x) f3(x) 。我们是想用这三个函数分别来拟合Price,Price的真实值记为 Y Y Y 。我们给定 x x x ,这三个函数都会输出一个 f ( X ) f_(X) f(X) ,这个输出的 f ( X ) f_(X) f(X) 与真实值 Y Y Y 可能是相同的,也可能是不同的,为了表示我们拟合的好坏,我们就用一个函数来度量拟合的程度,比如: L ( Y , f ( X ) ) = ( Y − f ( X ) ) 2 L(Y,f(X))=(Y-f(X))^2 L(Y,f(X))=(Yf(X))2 ,这个函数就称为损失函数(loss function),或者叫代价函数(cost function)。损失函数越小,就代表模型拟合的越好

那是不是我们的目标就只是让loss function越小越好呢?还不是。
这个时候还有一个概念叫风险函数(risk function)。风险函数是损失函数的期望,这是由于我们输入输出的 ( X , Y ) (X,Y) (X,Y) 遵循一个联合分布,但是这个联合分布是未知的,所以无法计算。但是我们是有历史数据的,就是我们的训练集, f ( X ) f(X) f(X) 关于训练集的平均损失称作经验风险(empirical risk),即 1 N ∑ i = 1 n L ( y i , f ( x i ) ) \frac{1}{N}\sum_{i=1}^nL(y_i, f(x_i)) N1i=1nL(yi,f(xi)) ,所以我们的目标就是最小化 1 N ∑ i = 1 n L ( y i , f ( x i ) ) \frac{1}{N}\sum_{i=1}^nL(y_i, f(x_i)) N1i=1nL(yi,f(xi)) ,称为经验风险最小化。

那我们看上面的图,那肯定是最右面的 f 3 ( x ) f_3(x) f3(x) 的经验风险函数最小了,因为它对历史的数据拟合的最好嘛。但是我们从图上来看 f 3 ( x ) f_3(x) f3(x) 肯定不是最好的,因为它过度学习历史数据,导致它在真正预测时效果会很不好,这种情况称为过拟合**(over-fitting)
为什么会造成这种结果?大白话说就是它的函数太复杂了,都有四次方了,这就引出了下面的概念,我们不仅要让经验风险最小化,还要让
结构风险最小化**。这个时候就定义了一个函数 J ( f ) J(f) J(f),这个函数专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有 L 1 L_1 L1, L 2 L_2 L2范数。到这一步我们就可以说我们最终的优化函数是: m i n 1 N ∑ i = 1 n L ( y i , f ( x i ) ) + λ J ( f ) min\frac{1}{N}\sum_{i=1}^nL(y_i, f(x_i)) + \lambda J(f) minN1i=1nL(yi,f(xi))+λJ(f) ,即最优化经验风险和结构风险,而这个函数就被称为目标函数
结合上面的例子来分析:最左面的 f 1 ( x ) f_1(x) f1(x) 结构风险最小(模型结构最简单),但是经验风险最大(对历史数据拟合的最差);最右面的 f 3 ( x ) f_3(x) f3(x) 经验风险最小(对历史数据拟合的最好),但是结构风险最大(模型结构最复杂);而 f 2 ( x ) f_2(x) f2(x) 达到了二者的良好平衡,最适合用来预测未知数据集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值