机器学习之目标函数、损失函数、代价函数,有什么区别?

首先给出结论:损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,对于目标函数来说在有约束条件下的最小化就是损失函数(loss function)。

在这里插入图片描述
上面三个图的函数依次为 f 1 ( x ) f_1(x) f1(x) , f 2 ( x ) f_2(x) f2(x) , f 3 ( x ) f_3(x) f3(x) 。我们是想用这三个函数分别来拟合Price,Price的真实值记为 Y Y Y 。我们给定 x x x ,这三个函数都会输出一个 f ( X ) f_(X) f(X) ,这个输出的 f ( X ) f_(X) f(X) 与真实值 Y Y Y 可能是相同的,也可能是不同的,为了表示我们拟合的好坏,我们就用一个函数来度量拟合的程度,比如: L ( Y , f ( X ) ) = ( Y − f ( X ) ) 2 L(Y,f(X))=(Y-f(X))^2 L(Y,f(X))=(Yf(X))2 ,这个函数就称为损失函数(loss function),或者叫代价函数(cost function)。损失函数越小,就代表模型拟合的越好

那是不是我们的目标就只是让loss function越小越好呢?还不是。
这个时候还有一个概念叫风险函数(risk function)。风险函数是损失函数的期望,这是由于我们输入输出的 ( X , Y ) (X,Y) (X,Y) 遵循一个联合分布,但是这个联合分布是未知的,所以无法计算。但是我们是有历史数据的,就是我们的训练集, f ( X ) f(X) f(X) 关于训练集的平均损失称作经验风险(empirical risk),即 1 N ∑ i = 1 n L ( y i , f ( x i ) ) \frac{1}{N}\sum_{i=1}^nL(y_i, f(x_i)) N1i=1nL(yi,f(xi)) ,所以我们的目标就是最小化 1 N ∑ i = 1 n L ( y i , f ( x i ) ) \frac{1}{N}\sum_{i=1}^nL(y_i, f(x_i)) N1i=1nL(yi,f(xi)) ,称为经验风险最小化。

那我们看上面的图,那肯定是最右面的 f 3 ( x ) f_3(x) f3(x) 的经验风险函数最小了,因为它对历史的数据拟合的最好嘛。但是我们从图上来看 f 3 ( x ) f_3(x) f3(x) 肯定不是最好的,因为它过度学习历史数据,导致它在真正预测时效果会很不好,这种情况称为过拟合**(over-fitting)
为什么会造成这种结果?大白话说就是它的函数太复杂了,都有四次方了,这就引出了下面的概念,我们不仅要让经验风险最小化,还要让
结构风险最小化**。这个时候就定义了一个函数 J ( f ) J(f) J(f),这个函数专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有 L 1 L_1 L1, L 2 L_2 L2范数。到这一步我们就可以说我们最终的优化函数是: m i n 1 N ∑ i = 1 n L ( y i , f ( x i ) ) + λ J ( f ) min\frac{1}{N}\sum_{i=1}^nL(y_i, f(x_i)) + \lambda J(f) minN1i=1nL(yi,f(xi))+λJ(f) ,即最优化经验风险和结构风险,而这个函数就被称为目标函数
结合上面的例子来分析:最左面的 f 1 ( x ) f_1(x) f1(x) 结构风险最小(模型结构最简单),但是经验风险最大(对历史数据拟合的最差);最右面的 f 3 ( x ) f_3(x) f3(x) 经验风险最小(对历史数据拟合的最好),但是结构风险最大(模型结构最复杂);而 f 2 ( x ) f_2(x) f2(x) 达到了二者的良好平衡,最适合用来预测未知数据集。

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习中,残差函数损失函数目标函数代价函数都是用于描述模型预测值与真实值之间的差异的函数,但它们的含义和使用场景略有不同。 - 残差函数:在监督学习中,我们通常会给定一个数据集,其中包含了输入和输出的对应关系。此时,我们可以使用一个模型对输入进行预测,并将预测结果与真实输出之间的差异定义为残差。残差函数通常表示为: $ r_i = y_i - f(x_i) $ 其中,$y_i$表示真实输出值,$f(x_i)$表示输入$x_i$对应的模型预测值,$r_i$表示输入$x_i$对应的残差。残差函数通常用于拟合模型。 - 损失函数损失函数也称为代价函数或误差函数,是衡量模型预测值与真实值之间差异的函数。常见的损失函数包括均方误差(MSE)、交叉熵(Cross Entropy)等。损失函数通常表示为: $ L(\theta) = \frac{1}{m} \sum_{i=1}^{m} l(f(x_i, \theta), y_i) $ 其中,$\theta$表示模型的参数,$m$表示样本数量,$y_i$表示真实输出值,$f(x_i,\theta)$表示输入$x_i$对应的模型预测值,$l(\cdot)$表示基础损失函数损失函数通常用于训练模型,即通过最小化损失函数来寻找最优的模型参数。 - 目标函数目标函数也称为优化目标函数,是在优化模型时需要最小化的函数目标函数一般包含模型的损失函数和正则项。目标函数通常表示为: $ J(\theta) = L(\theta) + \lambda R(\theta) $ 其中,$\theta$表示模型的参数,$L(\theta)$表示模型的损失函数,$R(\theta)$表示正则项,$\lambda$表示正则化参数。目标函数通常用于选择最优的模型参数,以达到最小化损失函数的目的。 - 代价函数代价函数也称为成本函数,常用于描述整个训练集的误差。代价函数通常表示为: $ J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - f(x_i, \theta))^2 $ 其中,$\theta$表示模型的参数,$m$表示样本数量,$y_i$表示真实输出值,$f(x_i,\theta)$表示输入$x_i$对应的模型预测值,$J(\theta)$表示代价函数代价函数通常用于衡量整个模型在训练集上的误差,以确定是否需要调整模型的参数来改善模型的性能。 总之,残差函数损失函数目标函数代价函数都是机器学习中用于描述模型预测值与真实值之间的差异的函数,但它们的含义和使用场景是不同的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值