电子技术基础(三)__第5章 之逻辑函数相关的 最小项、卡诺图、逻辑图

本文详细介绍了逻辑函数的三种表示形式:最小项的定义、如何构造和识别,卡诺图的绘制规则及其在简化逻辑函数中的作用,以及逻辑图在逻辑电路设计中的直观呈现。通过实例演示,读者可以掌握这些关键概念在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑函数的表示形式主要有:  逻辑函数表达式、真值表、卡诺图、逻辑图。

本文主要介绍 逻辑函数表达式里的最小项,卡诺图, 逻辑图

1 最小项

设由三个输入变量A、B、C组成逻辑函数, 可以组成许多乘积项, 如ABC、 A(B+C)、等, 其中有一类乘积项:, 这8个乘积项就是三变量输入函数的最小项。

最小项具有以特点:

1.  每个乘积项包括三个输入量;

2. 每个变量都以原变量(A、B、C)或反变量(A、B、C)的形式在每个乘积项中出现且仅出现一次

表1 列出了三变量所有最小项

ABC最小项最小项编号
000m0
001m1
010m2
011m3
100m4
101m5
110m6
111m7

                                                               表1   三输入变量所有最小项

对于n个输入变量的逻辑函数,就有  个最小项。

最小项具有下列性质:

  • 对于任意一个最小项,只有输入变量的一组取值使得它的值为1.  而取其他值时, 这个最小项的值都为0.
  • 对于同一个变量取值, 任意两个最小项的乘积恒为0. 
      即 mi = mj(i    j)
  • 任意取值的变量条件下,全体最小项的和为1。


    以下看几个例子:

    例1:  写出二输入变量A、B的最小项。

    解:  二输入变量有 4 个最小项, 按照最小项定义, 四个最小项如下:
     

例2:

上式的最小项可分别表示为m1、m5、m6、m7, 所以又可写为 F(A,B,C)=m1 + m5 + m6 + m7, 或者

2 卡诺图

卡诺图是图形化的真值表, 是由美国工程师卡诺(Karnaugh)首先提出的一种用来描述逻辑函数的特殊方格图。

2.1  对于具有两个输入变量 A和B的逻辑函数,把输入变量A和B分别横写和竖写, 列出可能的取值0和1, 再把与A和B形成的最小项填入对应的方格中,用这样的表格表示逻辑函数称为卡诺图。

                                 图 1             二变量的卡诺图

图1 中每一个方格对应逻辑函数的一个最小项, 而且几何位置相邻(上下或左右相邻)的小方格具有逻辑相邻性,也就是说两个相邻小方格所代表的最小项只有一个变量取值不同。

2.2 对于有n个变量的逻辑函数, 其最小项有   个,因此该逻辑函数的卡诺图由 个小方格构成, 每个小方格都满足逻辑相邻项的要求。 三变量的卡诺图如下图2 所示, 四变量的卡诺如下图3所示。

               图2    三变量的卡诺图                                               图3         四变量的卡诺图

注意 卡诺图的顺序, 行的排列是 00, 01,11,10,  因此三变量 第一行后两格是 m3,m2, 不是m2, m3,   注意观察顺序

2.3  以下看几个例子

例1:  画出两变量函数F (A,B) = m(0, 2)的卡诺图。

解: 先画出两变量函数卡诺图,也就是有 4 个方格的表格, 再将两个输入变量 A 和 B 分别分配在列和行上,将对应于

m0 =  和 m2 = 的方格填上1.  即下图

例2: 画出三变量函数F(A,B,C) = m(0, 2, 5, 7)的卡诺图

解:先画出三变量卡诺图, 也就是有8个方格的表格,将变量 A 分配在列, 变量 BC 分配在行上; 列出变量 A的两种可能的取值0和1, 变量BC的四种可能的取值:00、01、11、10, 注意逻辑相邻原则;再将对应于最小项m0、m2、m5、m7的方格填上1,其他的方格不填。

3  逻辑图

由逻辑符号表示逻辑函数的图形, 叫做逻辑电路图, 简称逻辑图。

### 关于 UniApp 框架推荐资源与教程 #### 1. **Uniapp 官方文档** 官方文档是最权威的学习资料之一,涵盖了从基础概念到高级特性的全方位讲解。对于初学者来说,这是了解 UniApp 架构技术细节的最佳起点[^3]。 #### 2. **《Uniapp 从入门到精通:案例分析与最佳实践》** 该文章提供了系统的知识体系,帮助开发者掌握 Uniapp 的基础知识、实际应用以及开发过程中的最佳实践方法。它不仅适合新手快速上手,也能够为有经验的开发者提供深入的技术指导[^1]。 #### 3. **ThorUI-uniapp 开源项目教程** 这是一个专注于 UI 组件库设计实现的教学材料,基于 ThorUI 提供了一系列实用的功能模块。通过学习此开源项目的具体实现方式,可以更好地理解如何高效构建美观且一致的应用界面[^2]。 #### 4. **跨平台开发利器:UniApp 全面解析与实践指南** 这篇文章按照章节形式详细阐述了 UniApp 的各个方面,包括但不限于其工作原理、技术栈介绍、开发环境配置等内容,并附带丰富的实例演示来辅助说明理论知识点。 以下是几个重要的主题摘选: - **核心特性解析**:解释了跨端运行机制、底层架构组成及其主要功能特点。 - **开发实践指南**:给出了具体的页面编写样例代码,展示了不同设备间 API 调用的方法论。 - **性能优化建议**:针对启动时间缩短、图形绘制效率提升等方面提出了可行策略。 ```javascript // 示例代码片段展示条件编译语法 export default { methods: { showPlatform() { console.log(process.env.UNI_PLATFORM); // 输出当前平台名称 #ifdef APP-PLUS console.log('Running on App'); #endif #ifdef H5 console.log('Running on Web'); #endif } } } ``` #### 5. **其他补充资源** 除了上述提到的内容外,还有许多在线课程视频可供选择,比如 Bilibili 上的一些免费系列讲座;另外 GitHub GitCode 平台上也有不少优质的社区贡献作品值得借鉴研究。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值