电子技术基础(三)__第5章 数字电路基础__反函数_对偶函数

本文介绍了函数的反函数和对偶函数的概念,强调了它们的转换规则。反函数是通过原函数的变量与值进行特定变换得到,而对偶函数则保持变量不变,主要变化在于操作符和数值的替换。举例说明了如何求解一个函数的反函数以及计算对偶函数的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 反函数

设有函数F, 将F中所有的 ˙ 换成 + , + 换成 ˙, 0换成1, 1 换成0,

       原变量换成反变量, 原来的反变量换成原变量, 即得到反函数  9e51a1affe4644eca8c9fb680183cf91.png

二 对偶函数  

设有函数F,  将F中所有的 ˙ 换成 + , + 换成 ˙, 0换成1, 1 换成0,,得到新函数,称为F的对偶函数 0783b0ef9dc246efa1dffed6e2f495e4.png

注意: 对偶函数的变量保持不变!, 表达式的优先顺序不变。

三 看两个例题

1.  求函数 088e594d47e34c2386e72af0f6e10a14.png的反函数

解: 4e2dac1d9aed432284144f113bc1b06d.png

2. 求函数F = (A + 0)  ·(B + 0)的对偶函数

解: 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值