1. 概述
- 用“1”和“0”表示逻辑,而不是大小。比如是否。 (
个人理解成中华传统文化中的阴阳) - 数字电路中,用逻辑代数表示开关、高低电平等, 用逻辑函数来表示其输入输出的因果关系。
- 这个逻辑代数是乔治·布尔首先提出,所以也被叫做布尔数(bool)。
2. *三种基本运算(电路符号)及其组合
2.1 与或非
利用集合的关系,协助理解
运算 | 描述 | 符号 | 电路 |
---|---|---|---|
与 | 1与1才是1 | A·B | 串联类比 |
或 | 有1就是1 | A+B | 并联类比 |
非 | 阴阳转换 | A`,~A(或是上方加一横) | 短路开关类比 |
(备注:与或符号对应乘加挺有意思的,把1,0当成数值参与乘加运算的结果,大于1的都取1,结果和逻辑运算结果一样)
ps:注意非门小圆点
2.2 组合运算
与非,或非,与或非{这个组合运算比较简,pass}
异或: 两者不同为1,符合交换结合分配律
同或:相同为一,异或的非运算
3. 基本公式和常用公式
3.1 基本公式整理
3.1.1 变量与常量的关系公式:
A
⋅
0
=
0
、
A
+
0
=
A
、
A
+
1
=
A
、
A
⋅
1
=
A
A·0 =0、A+0=A、A+1=A、A·1=A
A⋅0=0、A+0=A、A+1=A、A⋅1=A
A
⋅
A
′
=
0
、
A
+
A
′
=
1
A·A'=0、A+A'=1
A⋅A′=0、A+A′=1(这两个也被称为互补律,因为是一个变量与他的反变量的关系)
用途:通过常量与变量的关系可以引入变量,消去变量
3.1.2. 交换律与结合律
A
⋅
B
=
B
⋅
A
、
A
+
B
=
B
+
A
A·B=B·A、A+B=B+A
A⋅B=B⋅A、A+B=B+A
A
⋅
B
⋅
C
=
A
⋅
(
B
⋅
C
)
、
A
+
B
+
C
=
A
+
(
B
+
C
)
A·B·C=A·(B·C)、A+B+C=A+(B+C)
A⋅B⋅C=A⋅(B⋅C)、A+B+C=A+(B+C)
3.1.3. *分配律
A
⋅
(
B
+
C
)
=
A
B
+
A
C
A·(B+C) =AB+AC
A⋅(B+C)=AB+AC
A
+
(
B
C
)
=
(
A
+
B
)
⋅
(
A
+
C
)
A+(BC) = (A+B)·(A+C)
A+(BC)=(A+B)⋅(A+C)(这个比较容易想不到)
3.1.4. 重叠律
A + A = A 、 A ⋅ A = A A+A=A、A·A=A A+A=A、A⋅A=A
3.1.5. **摩根定律(反演律):与或转换
(
A
⋅
B
)
′
=
A
′
+
B
′
、
(
A
+
B
)
′
=
A
′
⋅
B
′
(A·B)' = A'+B'、(A+B)' = A'·B'
(A⋅B)′=A′+B′、(A+B)′=A′⋅B′
理解:个人觉得结合venn图理解起来很方便
用途:与或门互换
ps:以上基本公式可以采用真值表推导,不过我个人借助venn图理解,感觉可以。
3.2 常用公式整理
常用公式是在基本公式的基础上推导而出
3.2.1. 吸收律(在分配律,和常量变量的关系推导下得到)
A
+
A
B
=
A
(
1
+
B
)
=
A
A+AB = A(1+B)=A
A+AB=A(1+B)=A
应用理解:多余的项可删掉
A
(
A
+
B
)
=
A
A
+
A
B
=
A
+
A
B
=
A
A(A+B) = AA+AB =A+AB = A
A(A+B)=AA+AB=A+AB=A
应用理解:在当一项和包含这一项的和项相乘时,其和项可以消掉
A
+
A
′
B
=
(
A
+
A
′
)
(
A
+
B
)
=
A
+
B
A+A'B=(A+A')(A+B)=A+B
A+A′B=(A+A′)(A+B)=A+B
应用理解:这个公式中自己的反因子多余,可删掉
3.2. 2. 其他常用公式
A
B
+
A
′
C
+
B
C
=
A
B
+
A
′
C
+
B
C
(
A
′
+
A
)
=
A
B
+
A
′
C
AB+A'C+BC=AB+A'C+BC(A'+A)=AB+A'C
AB+A′C+BC=AB+A′C+BC(A′+A)=AB+A′C
应用理解:在三个乘积项相加时,如果前两项中的一个因子互为反,那么剩余的因子组成的另一项则是多余的,可以删掉;
A
B
+
A
′
C
+
B
C
D
=
A
B
+
A
′
C
+
B
C
D
(
A
′
+
A
)
=
A
B
+
A
′
C
AB+A'C+BCD=AB+A'C+BCD(A'+A)=AB+A'C
AB+A′C+BCD=AB+A′C+BCD(A′+A)=AB+A′C
A
(
A
B
)
′
=
(
A
A
′
)
+
(
A
B
′
)
=
A
B
′
A(AB)'=(AA')+(AB')=AB'
A(AB)′=(AA′)+(AB′)=AB′
应用理解:如果某项和包含这一项的乘积项取反相乘时,则这一项可以删掉
A
′
(
A
B
)
′
=
A
′
+
A
′
B
′
=
A
′
A'(AB)'=A'+A'B'=A'
A′(AB)′=A′+A′B′=A′
应用理解:当某个项取反和包含这一项的乘积项取反相乘时,则只保留这个取反项
出错的地方:
- A ′ B ′ = ( A B ) ′ A'B'=(AB)' A′B′=(AB)′非运算的优先级更高
- 优先级:括号>非>与>或
关键是找到和代数运算的异同点,易错点,然后公式还是要结合电路图来看:
- 我觉得那个分配律就得注意一下
- 反演律也要注意
4. 基本定理
4.1 代入定理
描述:任何一个含有A变量的等式,将里面的A全部换成同一个逻辑函数G,那么等式仍然成立
理解:A无非0,1两种可能,G也无非0,1两种可能,0,1会使之成立,所以G也会
用途:将单双变量的公式,推导到多变量
例子:反演律推广
(
A
B
)
′
=
A
′
+
B
′
(AB)'=A'+B'
(AB)′=A′+B′
(
G
B
)
′
=
G
′
+
B
′
,
G
=
A
C
(GB)'=G'+B',G=AC
(GB)′=G′+B′,G=AC
(
A
C
B
)
′
=
(
A
C
)
′
+
B
=
A
′
+
C
′
+
B
′
(ACB)'=(AC)'+B=A'+C'+B'
(ACB)′=(AC)′+B=A′+C′+B′
(
A
B
C
)
′
=
A
′
+
B
′
+
C
′
(ABC)'=A'+B'+C'
(ABC)′=A′+B′+C′
4.2 *反演定理求反函数
描述:与或互换,变量和常量都取反,运算顺序不能改变,多变量取反的“非”不能变,可以得到逻辑函数的反函数
例子:求
Y
=
A
(
B
+
C
)
+
C
D
Y=A(B+C)+CD
Y=A(B+C)+CD 的
Y
′
Y'
Y′
Y
′
=
(
A
′
+
B
′
C
′
)
(
C
′
+
D
′
)
=
A
′
C
′
+
A
′
D
′
+
B
′
C
′
+
B
′
C
′
D
′
=
A
′
C
′
+
A
′
D
′
+
B
′
C
′
Y'=(A'+B'C')(C'+D')=A'C'+A'D'+B'C'+B'C'D'=A'C'+A'D'+B'C'
Y′=(A′+B′C′)(C′+D′)=A′C′+A′D′+B′C′+B′C′D′=A′C′+A′D′+B′C′
4.3 *对偶定理求对偶式
描述:与或互换,常量(0,1) 都取反,得到对偶式,(注意区别反演)
用途:对偶规则,如果两个式子的对偶式相等,那么这两个式子相等,所以可以方便证明
例子:求
Y
=
(
A
+
B
′
)
(
A
+
C
⋅
1
)
Y=(A+B')(A+C·1)
Y=(A+B′)(A+C⋅1) 的
Y
D
Y^{D}
YD
Y
D
=
(
A
B
‘
)
+
A
(
C
+
0
)
Y^{D}=(AB‘)+A(C+0)
YD=(AB‘)+A(C+0)
5. 逻辑函数及其表示方法
定义:输入逻辑二值,输出也是逻辑二值
表示方式:真值表,逻辑代数式,逻辑图,波形图,卡诺图,点阵图
5.1 *转换
-
由真值表写逻辑函数式:
①找出真值表中使逻辑函数为“1”的输入变量的组合;
②对应每个输出为“1”变量组合关系为与的关系,即乘积项,其中如图输入变量取值为“1 ”的写成原变量,输入变量取值为“0”的写成反变量;
③将这些乘积项相加,即得到输出的逻辑式 -
其他方式:略
5.2 *两种逻辑的标准式
标准与或式 和 标准或与式
5.2.1 最小项和最大项
- 最小项
定义:n个变量的与式,每个以本身或本身的非出现一次
ps:n个的排列,原1反0序列对应的二进制数对应的十进制‘数作为序号’
性质:所有最小项之和为1,只有一组取值使某一个最小项为1 - 最大项
定义:n个变量的或式,每个以本身或本身的非出现一次
ps:n个的排列,原0反1序列对应的二进制数对应的十进制‘数作为序号’
性质:所有最大项之逻辑积为0,只有一组取值使某一个最大项为0 - 关系
最大项和最小项互为求反
5.2.2 **两种标准式
-
标准与或式
在n变量的逻辑函数中,若某一乘积项由于缺少一个变量不是最小项,则在这项中添加此变量与这个变量的反变量之和这一项,使之称为最小项,即利用公式 A + A ’ = 1 A+A’=1 A+A’=1
-
标准或与式
在n变量的逻辑函数中,若某一和项由于缺少一个变量不是最大项,则在这项中加上此变量与这个变量的反变量之积这一项,即利用公式 A A ’ = 0 AA’=0 AA’=0,然后利用公式 A + B C = ( A + B ) ( A + C ) A+BC=(A+B)(A+C) A+BC=(A+B)(A+C)使之称为最大项
-
两者的关系
利用反演定理:
例子:
5.2.3 通过真值表写出标准式
• 标准与或式写法 :由真值表确定逻辑函数为“1”的项作为函数的最小项(乘积项)。若输入变量取“1”,则写成原变量;若输入变量取值为“0”,则写成反变量。 不同的输出“1”为和的关系
• 标准或与式写法 :由真值表确定逻辑函数为“0”的项作为函数的最大项(和项)。若输入变量取“1”,则写成反变量;若输入变量取值为“0”,则写成原变量。不同的输出“0”为积的关系
个人觉得学会一种,然后用上面的关系转换即可
5.2.4 写出某个函数的标准形式及其反函数
展开
(
)
′
()'
()′这种形式要用反演律
预告:下节课准备研究逻辑函数的化简