数据分析之道-第6章 数据指标体系

  • 数据分析师基于用户原始数据及用户标签,设计业务的监控指标并通过BI(商业智能)工具定时调度实现业务现状监控
  • 6.1 从中国人口数据初识指标体系构建
    • 6.1.1 什么是指标体系
      • 指标体系是指标与体系的结合体,是一套从多个维度拆解业务现状并有系统、有规律地组合起来的多个指标
      • 也就是说,单个指标只能称为指标,多个有一定规律、内部有一定关联的指标的组合才能称为指标体系
    • 6.1.2 为什么需要指标体系
      • 1. 形成标准化的衡量指标,监控业务发展状况
        • 近五年人口状况

        • 近20年人口变化趋势

        • 有了出生率、死亡率及自然增长率等指标并且长期监控这些指标,我们就很容易发现中国人口结构上的一些问题了
      • 2. 通过指标分级治理,快速定位业务问题,优化业务方向
        • 自然增长率的计算公式

        • 自然增长率的三级拆解

        • 总结上述问题拆解的过程
          • 首先,建立了自然增长率相关的指标体系
          • 其次,通过拆解自然增长率这个指标前后的关联关系,通过回溯和下钻对自然增长率这个指标进行了三级拆解
          • 最后通过相关数据验证及实际调查得出最终影响自然增长率的因素
      • 3. 形成标准化体系,可减少重复工作,提高分析效率
        • 做好指标体系这一块工作可以让统计分析师少做一些临时取数的工作,同时可以实现业务之间的横向和纵向对比(前提是具有可比性的业务)
        • 如果每年的指标体系不一样,那么进行纵向对比也没有什么意义,所以一套固化下来的指标体系显得尤为重要
    • 6.1.3 指标体系的评价标准及注意事项
      • 如果数据分析师做完一套指标体系之后,业务方还是频频找你提出取数需求,那么可能是你的指标体系还存在优化的空间,这时候就应该先寻找指标体系的问题
      • 如果指标体系没有较大的问题,那么如何通过现有指标体系评价业务现状呢?
        • 作为数据分析师,通常会用到比较的方法,有比较才有说服力。一般情况下我们会用现有的业务指标和大盘数据进行比较,从而说明业务现状
      • 构建一套指标体系需要注意哪些问题呢?
        • 1)数据提前埋点
        • 2)统一计算口径
        • 3)指标穷尽且相互独立,遵循MCEC原则
  • 6.2 用四个模型梳理数据指标体系构建的方法论
    • 6.2.1 构建数据指标体系的方法
      • 数据指标体系构建的流程

    • 6.2.2 用三个步骤、四个模型梳理数据指标体系的方法
      • 1. OSM模型——明确业务目标,数据赋能业务
        • 数据服务于业务才能赋能业务,数据脱离业务就会失去其价值。
        • 数据分析师在建立数据指标体系之前,一定要清晰地了解业务目标,也就是OSM模型中的O(Object)
          • 业务的目标也就是业务的核心KPI,了解业务的核心KPI能够帮助数据分析师快速理清指标体系的方向
        • 了解业务目标之后,就需要制定相应的行动策略,也就是模型中的S(Strategy)
          • 把业务的核心KPI拆解到产品生命周期(AARRR)或者用户行为路径(UJM)中,在整条链路中分析可以提升核心KPI的点,据此制定行动策略
        • 最后,需要数据分析师制定较细的评估指标,也就是模型中的M(Measure)
          • 评估指标的制定是将产品链路或者行为路径中的各个核心KPI进行下钻细分,这里用到的方法就是麦肯锡著名的MECE模型,需保证每个细分指标是完全独立且相互穷尽的。
        • OSM模型的内容及其与AARRR模型、UJM模型、MECE模型之间的关系

      • 2. AARRR模型和UJM模型——理清用户生命周期及行为路径
        • AARRR模型和UJM模型都是路径模型,二者原理相似,只是它们出发的角度不一样。AARRR模型是从产品角度出发的,揭示用户的生命周期;而UJM模型是从用户出发的,揭示用户的行为路径
        • AARRR模型基于用户生命周期,简单来说就是获取、激活、留存、付费、推广。对于一款产品来说,首先要从各个渠道获取用户;其次需要激活这些用户并让其留存下来;对于留存下来的用户,要引导其付费及推广产品
        • UJM模型是从用户角度出发的,描述了用户进入产品的整个路径流程,即注册、登录、加购、购买、复购
        • AARRR模型和UJM模型的内容及其之间的关系

      • 3. MECE模型——指标体系分级治理
        • 需要对这些核心KPI向下进行三到五层的拆解,这个过程称为指标体系分级治理,用到的模型是MECE模型
        • MECE模型

    • 6.2.3 以GMV为例搭建数据指标体系
      • 本节给出的案例通过6.2.2节提到的三个步骤、四个模型去搭建GMV相关的指标体系
      • GMV相关的指标体系搭建框架

      • 第一步,根据OSM模型构建整体框架,明确业务目标
        • 为什么业务方会关注GMV?因为这是业务的核心KPI,关系到自己的收入,GMV越高,年终奖越高。所以,数据分析师提炼出业务目标——提升用户总成交额GMV
      • 第二步,根据AARRR或UJM模型拆解用户达成GMV的路径,将业务目标转化为提升用户路径转化率
        • 用户达成GMV需要通过六个步骤,即注册、登录、曝光、点击、加购、成交
        • 到目前为止,已经将提升GMV这个目标转化为提升用户路径转化率,只要提升用户各个步骤的基数,使得每一步的转化率变高,就可以达成提高GMV的目标
        • 将提升GMV转化为提高用户路径转化率还有另外一个好处,即通过路径拆解能够暴露业务更多的问题。同时,数据分析师可以根据暴露的业务问题提出相应的解决方案,这也是数据分析师的价值所在
      • 第三步,根据MECE模型对GMV达成路径的每一个指标进行拆解,实现指标分级治理
        • 有了GMV达成路径之后,数据分析师就可以将这个路径的核心步骤抽象成GMV的分级指标并进行回溯下钻。同时,找出影响每一个步骤的关键因素作为二级指标,每一个关键因素之间需要完全独立,相互穷尽
        • GMV公式

        • GMV公式一级拆解

        • 用户成交数计算公式

        • 代入GMV公式

        • GMV公式二级拆解

        • 点击UV公式

        • GMV=曝光UV×转化率×访购率×平均客单价
        • GMV公式三级拆解

        • 到这里并没有结束,像曝光UV等指标还可以继续向下拆解,例如,谷歌渠道曝光UV、华为渠道曝光UV等,可以根据具体的工作场景进行适当的调整和向下拆解
      • 两个值得注意的问题
        • 问题1:将指标拆这么细有什么用?
          • 正向作用:分解核心KPI,明确每一步骤的行动目标和每个行动的考核指标
          • 反向作用:当业务出现问题时,可以通过指标体系反向排查业务问题
        • 问题2:在运用MECE模型进行指标体系分级治理时,是不是拆得越细越好、越全越好?
          • 当然不是,在用MECE模型拆解指标时,需要找到与核心指标有重要关联的子集进行拆解分类,这样才能保证指标体系能够指导业务方进行决策分析,帮助数据分析师定位业务问题
  • 6.3 如何搭建一套通用的指标体系并快速落地应用
    • 6.3.1 多部门配合搭建数据指标体系的流程
      • 多部门配合搭建数据指标体系的流程

      • 完整的指标体系搭建流程有以下7个步骤:
        • (1)需求收集:产品(策划)经理或者运营人员完成产品原型(策划案)或者运营方案,数据分析师根据原型(策划案)或者运营方案提炼数据需求,评估需求可行性并和需求方讨论,修改不合理需求
        • (2)需求汇总及排期:数据分析师将数据需求整理成文档并根据优先级对需求进行排期
        • (3)确定指标体系方案:数据分析师以OSM模型、AARRR模型、UJM模型、MECE模型作为指导思想,初步确定指标体系建设方案
        • (4)确定数据埋点方案:数据分析师根据初步的指标体系建设方案设计埋点方案,同时给出字段命名规范及数据采集方案。然后,数据分析师将上述方案给到前后端进行埋点
        • (5)数据采集:在数据采集阶段,数据工程师需要将前后端埋点数据送入数据仓库并进行数据清洗
        • (6)搭建指标体系:在搭建指标体系之前,数据分析师需要对入库的数据进行核验,检查数据是否全,数值是否正确。然后,根据指标体系建设方案进行指标体系搭建及落地
        • (7)效果评估:指标体系落地,用于监控业务现状,指导业务决策,定位业务问题,在业务方的不断反馈中逐渐完善整套指标体系
    • 6.3.2 搭建通用的指标体系
      • 以互联网产品的生命周期为切入点,介绍一套可以适用于绝大多数互联网产品的指标体系的构建流程
      • 通用指标体系的构建流程

      • 1. 用OSM模型确定业务目标和数据维度
        • 首先,数据分析师需要明确业务目标
          • 对于任何一款互联网产品,其终极目的就是盈利。所以,通用指标体系的业务目标就是提高产品的付费率
        • 其次,数据分析师要统一数据统计的维度
          • 搭建指标体系可以从很多维度出发,常见维度有“人”“货”“场”。在这套通用指标体系的搭建中,笔者选择的数据维度是“人”
      • 2. 用AARRR/UJM模型实现路径拆解,分解业务目标
        • 根据AARRR模型实现路径拆解,将提升付费率这个目标拆解到每一个子路径上,只要提升每一步骤的用户基数及其转化率,最终就能提升用户付费率
        • 换句话说,业务目标被转化为提升从用户获取到用户付费这一过程的转化率
        • AARRR模型分解业务目标

      • 3. 用MECE模型实现指标体系分级治理
        • 首先,进行一级指标的提炼
          • 一级指标是用户路径的每一个步骤中业务最关注的指标,也就是业务核心KPI。这个提炼过程需要和业务方进行沟通,也需要数据分析师的业务直觉和数据思维
          • 通用的一级指标

        • 其次,拆解一级指标得到二级指标和三级指标
          • 一级指标能够监控业务现状,发现业务问题,如果一级指标一直保持平稳上升的趋势,就说明业务一直向好。但一级指标如果出现下跌的情况,就需要向下排查问题所在。这时就该二级指标甚至三级指标登场了
          • 二级指标是一级指标的子集,是一级指标完全穷尽且相互独立的影响因素,重复性的指标没有任何意义
          • 通用指标体系

  • 6.4 定位异动因素
    • 对于某一块业务来说,建立完数据指标体系,整体的业务就得到监控。当数据发生异动时,通过数据指标体系拆解,能够快速定位问题
    • 6.4.1 数据波动多少才能称为数据异动
      • 其实运营人员在意的并不是波动,而是指标背后代表的含义。所以,分析指标异动的第一步是搞清楚指标异动背后的业务含义,脱离业务含义的分析没有任何意义
    • 6.4.2 数据波动分析的方法论
      • 首先,用MECE模型对数据波动进行一个分类,尽可能地列举数据波动的所有类别,并且使得各个类别之间彼此独立
      • 数据波动的分类

      • 对于前四类数据波动来说,并不需要使用逻辑树的拆解方法定位异动因素。所以在进行逻辑树拆解之前,先要排除前四种数据波动
      • 6.4.2.1 数据波动分析的四排除
        • 1. 排除数据周期性波动
          • 数据的周期性波动

          • 排查数据异动的第一步是,先确定数据的波动是否是周期性波动引起的,因为周期性波动属于正常的波动
          • 对于不同的业务,周期性波动可能会受到季节、节假日、周末等因素的影响,需视具体的业务情况而定
        • 2. 排除内部因素的影响
          • 通常情况下,内部影响来源于业务活动
          • 内部因素的影响

          • 面对这种情况,数据分析师可以更进一步地帮助业务方分析活动效果,从数据的角度找出有哪些点是可以提升的,如果数据分析师能给出一些意见或建议,就更好了。这样的数据分析才是有价值的,最终是能够帮助业务方的
        • 3. 排除外部因素的影响
          • 还会有一些外部因素造成的数据波动。例如,天气、政策、竞争对手等外部因素的影响,数据分析师也无能为力
          • 外部因素的影响

          • 对于这些不可控的外部因素的影响,特别是负面的影响,数据分析师可以评估其影响范围和影响周期,反馈给业务方以帮助其决策
        • 4. 排除数据传输问题
          • 当数据分析师排除数据周期性波动、内部因素影响及外部因素影响之后,接下来就需要确定是否是因数据传输问题而造成数据波动
          • 排查数据传输问题引起的数据波动可以根据数据传输的流程,逐个环节进行排查,定位到有问题的环节,找到相应的负责人修复问题
          • 数据传输问题的排查流程

      • 6.4.2.2 通过逻辑树确定数据波动影响因素
        • 如果数据的波动不是自然波动,也不是内部主动行为或外部因素引起的,更不是数据传输问题造成的,而是由一些意外却不可知的因素造成的,这时候就需要通过逻辑树的方式查找到底是什么原因造成数据的波动
        • 逻辑树排查数据异动原因

        • 通过这样的拆分,可以看出到底是新用户少了还是老用户少了,明确问题后继续向下拆分确定最细颗粒度的影响因素
        • 数据分析师也可以对新用户进行其他维度的拆分,可以按地区进行拆分,看看到底是哪个地区的新用户减少造成的,如果是整体用户减少造成的,那可能是产品本身存在一定问题,和新用户的匹配性不是很好;如果是某个地区的用户减少,则可以继续拆解维度,可以考虑以服务器为维度进行拆解,因为某个地区的用户骤减可能是该地区服务器坏了,这是思考角度之一;还可能是产品在当地的本地化做得不够好,对于某个地区的用户群体没有足够的吸引力
    • 6.4.3 从数据埋点到指标体系再到指标异动的闭环
      • 通过逻辑树拆解的这些数据指标大部分已经包含在6.3节建立的指标体系中,数据分析师只需要按照上述的拆解思路筛选出自己想要的数据指标和维度的组合,查看数据变化、确定异动因素即可
      • 有时候排查出来的问题可能没有体现在指标体系中,这时候就可以将相应的指标和监控维度添加到对应的指标体系中,方便日常的业务监控和数据问题的排查
      • 数据分析师业务知识体系闭环

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值