Codeforces Round #729 div.2 A-E题解

视频讲解:BV1hB4y1N7jF

A. Odd Set

题目大意

给定 2 n ( 1 ≤ n ≤ 100 ) 2n(1 \leq n \leq 100) 2n(1n100) 个可能重复的整数 a i ( 0 ≤ a i ≤ 100 ) a_i(0 \leq a_i \leq 100) ai(0ai100) ,问是否能将其分为 n n n 对,使得每对的两个整数之和为奇数。

题解

只有当每对内包含一个奇数加一个偶数时,才能使其总和为奇数。因此充要条件为奇数个数与偶数个数相等。

参考代码

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;

int main()
{
	int T,n,x,i,sum0,sum1;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d",&n);
		sum0=sum1=0;
		for(i=1;i<=2*n;i++)
		{
			scanf("%d",&x);
			if(x&1)
				sum1++;
			else
				sum0++;
		}
		if(sum1==sum0)
			printf("Yes\n");
		else
			printf("No\n");
	}
}

B. Plus and Multiply

题目大意

有一个无限大的集合,定义如下:

  • 1 1 1 在集合中;
  • 如果 x x x 在集合中,则 x ⋅ a x \cdot a xa x + b x+b x+b 也在集合中;

给定 n , a , b ( 1 ≤ n , a , b ≤ 1 0 9 ) n,a,b(1 \leq n,a,b \leq 10^9) n,a,b(1n,a,b109),判断 n n n 是否在集合中。

题解

如果 n n n 在集合中,那么 n n n 必定可以表达为:
n = a x + b ⋅ y n=a^x+b \cdot y n=ax+by

其中 0 ≤ x , y 0 \leq x,y 0x,y 。因此只要枚举 x x x ,判断是否存在合法的 y y y 即可。
注意, a a a 可能等于 1 1 1 ,因此需要特判,或限定枚举次数。

参考代码

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;

int main()
{
	int T,i;
	ll n,a,b,base;
	bool flag;
	scanf("%lld",&T);
	while(T--)
	{
		scanf("%lld%lld%lld",&n,&a,&b);
		base=1;
		flag=false;
		for(i=1;i<=30&&base<=n;i++,base*=a)
		{
			if((n-base)%b==0)
			{
				flag=true;
				break;
			}
		}
		if(flag)
			printf("Yes\n");
		else
			printf("No\n");
	}
}

C. Strange Function

题目大意

f ( i ) f(i) f(i) 表示最小的不是 i i i 的因数的整数。
∑ i = 1 n f ( i ) \sum_{i=1}^n{f(i)} i=1nf(i) 1 0 9 + 7 10^9+7 109+7 取模的结果。
其中 1 ≤ n ≤ 1 0 16 1 \leq n \leq 10^{16} 1n1016

题解

首先会发现, f ( i ) f(i) f(i) 应该是一个相比 i i i 而言,很小的数。
如果 f ( i ) = y f(i)=y f(i)=y ,那么 i i i 需要是 L C M ( 1 , 2 , . . . , ( y − 1 ) ) LCM(1,2,...,(y-1)) LCM(1,2,...,(y1)) 的倍数,这个类似于阶乘的条件十分苛刻。
a i = L C M ( 1 , 2 , 3 , . . . , i ) a_i=LCM(1,2,3,...,i) ai=LCM(1,2,3,...,i) ,可以通过递推打表的方式求出所有小于 1 0 16 10^{16} 1016 a i a_i ai
x x x a i a_i ai 的倍数,则有 f ( x ) ≥ i + 1 f(x) \geq i+1 f(x)i+1
因此可以通过枚举 i i i ,统计有多少个不超过 n n n a i a_i ai 的倍数,从而累加到答案上。
具体而言,
a n s = ( n + ∑ i = 1 a i ≤ n ⌊ n a i ⌋ ) %    m o d ans=(n+\sum_{i=1}^{a_i \leq n}{\lfloor \frac{n}{a_i} \rfloor}) \% \;mod ans=(n+i=1ainain)%mod

时间复杂度 O ( T ⋅ log ⁡ ( n ) ) O(T \cdot \log(n)) O(Tlog(n))

参考代码

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;

const ll MAXN=1e16+100;
const ll mod=1e9+7;
ll a[50];

int main()
{
	int T,cnt,i;
	ll n,ans;
	a[0]=a[1]=1;
	for(cnt=1;a[cnt-1]<MAXN;cnt++)
	{
		for(i=1;i<=cnt;i++)
		{
			if(a[cnt-1]*i%cnt==0)
			{
				a[cnt]=a[cnt-1]*i;
				break;
			}
		}
	}
	scanf("%d",&T);
	while(T--)
	{
		scanf("%lld",&n);
		ans=0;
		for(i=0;i<cnt&&a[i]<=n;i++)
			ans=(ans+n/a[i])%mod;
		printf("%lld\n",ans);
	}
}

D. Priority Queue

题目大意

对于由 + x +x +x − - 构成的操作序列 S S S ,定义函数 f ( S ) f(S) f(S) 由以下方式计算得到:

  • 从左到右遍历 S S S ,并维护一个多重集合 T T T
  • 对于 S S S 中的每个元素,若其为 + x +x +x ,则添加 x x x T T T 中;否则删除 T T T 中最小的元素(若 T T T 为空,则不进行任何操作);
  • 遍历完 S S S 中的所有元素后,求 T T T 中所有元素的总和,就是 f ( S ) f(S) f(S) ;

给定一个长度为 n ( 1 ≤ n ≤ 500 ) n(1 \leq n \leq 500) n(1n500) 的操作序列 A A A ,求 A A A 的所有子序列 B B B f ( B ) f(B) f(B) 之和。

题解

对于每个 + a x +a_x +ax 的操作(假设是第 x x x 次操作),考虑有多少种 B B B 在遍历完后依旧保留 a x a_x ax 。这样的子序列必须满足以下条件:

  1. 必须包含第 x x x 次操作;
  2. s s s T T T 中小于 a x a_x ax 的元素个数。对于第 x x x 次之后的每一次 − - 操作前, s s s 必须大于 0 0 0

d p i , j dp_{i,j} dpi,j 表示有多少种满足上述条件的子序列,并且:

  • 最后一次操作不晚于操作 i i i (若 i < x i < x i<x 则不要求满足第一个条件);
  • T T T j j j 个小于 a x a_x ax 的元素;

d p i , j dp_{i,j} dpi,j 可以通过以下转移式得到:

  • i ≠ x i \neq x i=x ,则可以不选择操作 i i i ,因此 d p i , j + = d p i − 1 , j dp_{i,j}+=dp_{i-1,j} dpi,j+=dpi1,j ;
  • i < x i < x i<x 且操作 i i i − - 操作,则可以选择操作 i i i ,因此
    • j = 0 j=0 j=0 ,则上一步可以有 1 1 1 个小于 a x a_x ax 的元素,也可以没有小于 a x a_x ax 的元素,即 d p i , 0 + = d p i − 1 , 0 + d p i − 1 , 1 dp_{i,0}+=dp_{i-1,0}+dp_{i-1,1} dpi,0+=dpi1,0+dpi1,1
    • j > 0 j>0 j>0 ,则 d p i , j + = d p i − 1 , j + 1 dp_{i,j}+=dp_{i-1,j+1} dpi,j+=dpi1,j+1
  • i > x i > x i>x 且操作 i i i − - 操作,则上一步有 j + 1 j+1 j+1 个小于 a x a_x ax 的元素,即 d p i , j + = d p i − 1 , j + 1 dp_{i,j}+=dp_{i-1,j+1} dpi,j+=dpi1,j+1
  • 若操作 i i i + a i +a_i +ai 操作,则判断 a i a_i ai a x a_x ax 大小:
    • a i < a x a_i < a_x ai<ax ,则 d p i , j + = d p i − 1 , j − 1 dp_{i,j}+=dp_{i-1,j-1} dpi,j+=dpi1,j1
    • a i > a x a_i > a_x ai>ax ,则 d p i , j + = d p i − 1 , j dp_{i,j}+=dp_{i-1,j} dpi,j+=dpi1,j
    • 注意,若 a i = a x a_i=a_x ai=ax,还需判断 i i i j j j 的大小,避免重复统计。

最终答案为
a n s = ∑ o p x = ′ + ′ ∑ j d p n , j ⋅ a x ans=\sum_{op_x='+'}{\sum_{j}{dp_{n,j}\cdot a_x}} ans=opx=+jdpn,jax

参考代码

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;

const int MAXN=550;
const int mod=998244353;
char op[MAXN];
int a[MAXN],sum[MAXN];
ll dp[MAXN][MAXN];

int main()
{
	int n,i,j,x;
	ll ans;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	{
		scanf(" %c",&op[i]);
		sum[i]=sum[i-1]+(op[i]=='+');
		if(op[i]=='+')
			scanf("%d",&a[i]);
	}
	ans=0;
	for(x=1;x<=n;x++)
	{
		if(op[x]=='-')
			continue;
		memset(dp,0,sizeof(dp));
		dp[0][0]=1;
		for(i=1;i<=n;i++)
		{
			for(j=0;j<=sum[i];j++)
			{
				if(x!=i)
					dp[i][j]=dp[i-1][j];
				if(op[i]=='-')
				{
					if(i<x)
					{
						if(j==0)
							dp[i][j]=(dp[i][j]+dp[i-1][j]+dp[i-1][j+1])%mod;
						else
							dp[i][j]=(dp[i][j]+dp[i-1][j+1])%mod;
					}
					else
						dp[i][j]=(dp[i][j]+dp[i-1][j+1])%mod;
				}
				else
				{
					if(a[i]<a[x]||a[i]==a[x]&&i<x)
						dp[i][j]=(dp[i][j]+dp[i-1][j-1])%mod;
					else
						dp[i][j]=(dp[i][j]+dp[i-1][j])%mod;
				}
			}
		}
		for(j=0;j<=sum[n];j++)
			ans=(ans+dp[n][j]*a[x])%mod;
	}
	printf("%lld\n",ans);
}

E1+E2. Abnormal Permutation Pairs

题目大意

p p p q q q 1 1 1 n n n 的排列,求有多少对 ( p , q ) (p,q) (p,q) 满足以下条件:

  • p p p 的字典序比 q q q 小;
  • p p p 中的逆序数对比 q q q 中的多;

答案对 m o d ( 1 ≤ m o d ≤ 1 0 9 ) mod(1 \leq mod \leq 10^9) mod(1mod109) 取模,注意 m o d mod mod 不一定为素数。

对于 Easy version, 1 ≤ n ≤ 50 1 \leq n \leq 50 1n50
对于 Hard version, 1 ≤ n ≤ 500 1 \leq n \leq 500 1n500

题解

p p p 的字典序比 q q q 小,则对于他们第一个不同的位置 x x x ,必有 p x < q x p_x < q_x px<qx
考虑以 x x x 为分割点, p p p q q q 之间的逆序数对区别。
为便于表述,设 P [ l , r ] P[l,r] P[l,r] 表示序列 P P P 的子序列 { P l , P l + 1 , . . . , P r } \{P_l,P_{l+1},...,P_{r}\} {Pl,Pl+1,...,Pr} i n v ( P ) inv(P) inv(P) 表示序列 P P P 的逆序数对数量。

根据之前定义,

  • p [ 1 , x − 1 ] = q [ 1 , x − 1 ] p[1,x-1]=q[1,x-1] p[1,x1]=q[1,x1] , 即 i n v ( p [ 1 , x − 1 ] ) = i n v ( q [ 1 , x − 1 ] ) inv(p[1,x-1])=inv(q[1,x-1]) inv(p[1,x1])=inv(q[1,x1])
  • 1 ≤ i ≤ x − 1 1 \leq i \leq x-1 1ix1 x ≤ j ≤ n x \leq j \leq n xjn ,则在序列 p p p ( i , j ) (i,j) (i,j) 是逆序数对的数量,也等于在序列 q q q ( i , j ) (i,j) (i,j) 是逆序数对的数量。

因此 i n v ( p ) > i n v ( q ) inv(p)>inv(q) inv(p)>inv(q) ,等价于 i n v ( p [ x , n ] ) > i n v ( q [ x , n ] ) inv(p[x,n])>inv(q[x,n]) inv(p[x,n])>inv(q[x,n])
由于逆序数对仅和大小有关,因此 p [ x , n ] p[x,n] p[x,n] q [ x , n ] q[x,n] q[x,n] 可以简化为 1 1 1 n − x + 1 n-x+1 nx+1 的排列。

Easy Version

f ( i , j ) f(i,j) f(i,j) 表示长度为 i i i 且有 j j j 个逆序数对的排列数量。
考虑 f ( i , j ) f(i,j) f(i,j) 的动态转移方程式。假设该排序首位元素的大小是 k k k ,那么与 k k k 相关的逆序数对,共有 k − 1 k-1 k1 个。如果删掉 k k k ,并将所有大于 k k k 的元素都减 1 1 1 则状态变为 f ( i − 1 , j − ( k − 1 ) ) f(i-1,j-(k-1)) f(i1,j(k1)) 。因此可以得到转移式:
f ( i , j ) = ∑ k = 1 m i n ( i , j + 1 ) f ( i − 1 , j − k + 1 ) f(i,j)=\sum_{k=1}^{min(i,j+1)}{f(i-1,j-k+1)} f(i,j)=k=1min(i,j+1)f(i1,jk+1)

整理后可以表示为:
f ( i , j ) = ∑ k = m a x ( j − i + 1 , 0 ) j f ( i − 1 , k ) f(i,j)=\sum_{k=max(j-i+1,0)}^{j}{f(i-1,k)} f(i,j)=k=max(ji+1,0)jf(i1,k)

利用前缀和,每次转移可以优化到 O ( 1 ) O(1) O(1) ,即可以在 O ( n 3 ) O(n^3) O(n3) 复杂度内求得所有 f ( i , j ) f(i,j) f(i,j)

回到 p < q , i n v ( p ) > i n v ( q ) p < q,inv(p)>inv(q) p<q,inv(p)>inv(q) 的条件。设第一个不同的位置为 x x x ,则其等价于 p x < q x , i n v ( p [ x , n ] ) > i n v ( q [ x , n ] ) p_x < q_x,inv(p[x,n])>inv(q[x,n]) px<qx,inv(p[x,n])>inv(q[x,n])
p x p_x px p [ x , n ] p[x,n] p[x,n] 中是第 k 1 k_1 k1 小的数, q x q_x qx q [ x , n ] q[x,n] q[x,n] 中是第 k 2 k_2 k2 小的数,则在 p [ x , n ] p[x,n] p[x,n] 中与 p x p_x px 相关的逆序数对有 k 1 − 1 k_1-1 k11 个,在 q [ x , n ] q[x,n] q[x,n] q x q_x qx 相关的逆序数对有 k 2 − 1 k_2-1 k21 个。因此条件可以转化为:
p < q    ⟺    p x < q x    ⟺    k 1 < k 2 p < q \iff p_x < q_x \iff k_1 < k_2 p<qpx<qxk1<k2

i n v ( p ) > i n v ( q )    ⟺    i n v ( p [ x , n ] ) > i n v ( q [ x , n ] ) inv(p)>inv(q) \iff inv(p[x,n]) >inv(q[x,n]) inv(p)>inv(q)inv(p[x,n])>inv(q[x,n])

   ⟺    k 1 + i n v ( p [ x + 1 , n ] ) > k 2 + i n v ( q [ x + 1 , n ] ) \iff k_1+inv(p[x+1,n])>k_2+inv(q[x+1,n]) k1+inv(p[x+1,n])>k2+inv(q[x+1,n])

其中 i n v ( p [ x + 1 , n ] ) inv(p[x+1,n]) inv(p[x+1,n]) i n v ( q [ x + 1 , n ] ) inv(q[x+1,n]) inv(q[x+1,n]) 可以通过 f ( i , j ) f(i,j) f(i,j) 求得。

a n s i ans_i ansi 表示 n = i n=i n=i 时的答案。
计算 a n s i ans_i ansi 时,若 p 1 = q 1 p_1=q_1 p1=q1 ,那么 p 1 p_1 p1 共有 i i i 种选择,剩余 i − 1 i-1 i1 个数共有 a n s i − 1 ans_{i-1} ansi1 种方案。
p 1 ≠ q 1 p_1 \neq q_1 p1=q1 ,即第一个不同的位置 x = 1 x=1 x=1 ,则需枚举 p x , q x , i n v ( p [ 2 , n ] ) , i n v ( q [ 2 , n ] ) p_x,q_x,inv(p[2,n]),inv(q[2,n]) px,qx,inv(p[2,n]),inv(q[2,n]) 四项:

a n s i = i ⋅ a n s i − 1 + ∑ k 1 = 1 n − x + 1 ∑ k 2 = k 1 + 1 n − x + 1 ∑ j 1 = 0 ( i − 1 ) ( i − 2 ) 2 f ( i − 1 , j 1 ) ⋅ ∑ j 2 = 0 j 1 + k 1 − k 2 − 1 f ( i − 1 , j 2 ) ans_i=i\cdot ans_{i-1}+\sum_{k_1=1}^{n-x+1}{\sum_{k_2=k_1+1}^{n-x+1}{\sum_{j_1=0}^{\frac{(i-1)(i-2)}{2}}f(i-1,j_1)\cdot \sum_{j_2=0}^{j_1+k_1-k_2-1}{f(i-1,j_2)}}} ansi=iansi1+k1=1nx+1k2=k1+1nx+1j1=02(i1)(i2)f(i1,j1)j2=0j1+k1k21f(i1,j2)

其中 j 2 j_2 j2 循环可以用前缀和优化,最终复杂度为 O ( n 5 ) O(n^5) O(n5) ,如果采用 FFT 加速,可以优化到 O ( n 3 log ⁡ ( n ) ) O(n^3 \log(n)) O(n3log(n)) ,或许也可以通过 Hard Version。

Hard Version

由于我们计算时,实际需要满足的不等式为 k 1 + i n v ( p [ x + 1 , n ] ) > k 2 + i n v ( q [ x + 1 , n ] ) k_1+inv(p[x+1,n])>k_2+inv(q[x+1,n]) k1+inv(p[x+1,n])>k2+inv(q[x+1,n]) ,其在 k 1 , k 2 k_1,k_2 k1,k2 固定的情况下,成立条件只和 i n v ( p [ x + 1 , n ] ) inv(p[x+1,n]) inv(p[x+1,n]) i n v ( p [ x + 1 , n ] ) inv(p[x+1,n]) inv(p[x+1,n]) 之差有关,考虑以此优化 d p dp dp

g ( i , j ) g(i,j) g(i,j) 表示有多少对长度为 i i i 的排列 p p p 与排列 q q q ,满足 i n v ( p ) − i n v ( q ) = k inv(p)-inv(q)=k inv(p)inv(q)=k

考虑其转移式,假设长度为 i − 1 i-1 i1 的一对排列 ( p ′ , q ′ ) (p',q') (p,q) ,其逆序数对数量分别为 j 1 j_1 j1 j 2 j_2 j2
现在分别向其中插入 i i i ,使其变为长度为 i i i 的一堆排列 ( p , q ) (p,q) (p,q) ,假设插入的位置分别在第 k 1 ( 0 ≤ k 1 ≤ i − 1 ) k_1(0 \leq k_1 \leq i-1) k1(0k1i1) 个元素与第 k 2 ( 0 ≤ k 2 ≤ i − 1 ) k_2(0 \leq k_2 \leq i-1) k2(0k2i1) 个元素之后,则 i n v ( p ) = j 1 + i − 1 − k 1 inv(p)=j_1+i-1-k_1 inv(p)=j1+i1k1 i n v ( q ) = j 2 + i − 1 − k 2 inv(q)=j_2+i-1-k_2 inv(q)=j2+i1k2
因此 i n v ( p ′ ) − i n v ( q ′ ) = j 1 − j 2 inv(p')-inv(q')=j_1-j_2 inv(p)inv(q)=j1j2 变为了 i n v ( p ) − i n v ( q ) = j 1 − j 2 + k 2 − k 1 inv(p)-inv(q)=j_1-j_2+k_2-k_1 inv(p)inv(q)=j1j2+k2k1
w = k 2 − k 1 w=k_2-k_1 w=k2k1 ,当 w w w 固定时,这样的 k 2 − k 1 k_2-k_1 k2k1 共有 n − ∣ w ∣ n-|w| nw 对。
枚举 w w w 可以得到一个 O ( n 4 ) O(n^4) O(n4) 的转移式:

g ( n , j ) = ∑ w = − n + 1 n − 1 ( n − ∣ w ∣ ) ⋅ g ( n − 1 , j + w ) g(n,j)=\sum_{w=-n+1}^{n-1}{(n-|w|) \cdot g(n-1,j+w)} g(n,j)=w=n+1n1(nw)g(n1,j+w)

O ( n 4 ) O(n^4) O(n4) 的复杂度依旧超标,再次对其优化:

g ( n , j ) − g ( n , j − 1 ) = ∑ w = − n + 1 n − 1 ( n − ∣ w ∣ ) ⋅ g ( n − 1 , j + w ) − ∑ w = − n + 1 n − 1 ( n − ∣ w ∣ ) ⋅ g ( n − 1 , j − 1 + w ) = ∑ w = 0 n − 1 g ( n − 1 , j + w ) − ∑ w = − n + 1 0 g ( n − 1 , j − 1 + w ) ) \begin{aligned} g(n,j)-g(n,j-1) &=\sum_{w=-n+1}^{n-1}{(n-|w|) \cdot g(n-1,j+w)}-\sum_{w=-n+1}^{n-1}{(n-|w|) \cdot g(n-1,j-1+w)} \\ &=\sum_{w=0}^{n-1}{g(n-1,j+w)}-\sum_{w=-n+1}^{0}{g(n-1,j-1+w))} \end{aligned} g(n,j)g(n,j1)=w=n+1n1(nw)g(n1,j+w)w=n+1n1(nw)g(n1,j1+w)=w=0n1g(n1,j+w)w=n+10g(n1,j1+w))

设前缀和 s ( n , j ) = ∑ k < j g ( n , k ) s(n,j)=\sum_{k < j}{g(n,k)} s(n,j)=k<jg(n,k) ,上式可以化简为
g ( n , j ) = g ( n , j − 1 ) + ( s ( n − 1 , j + n − 1 ) − s ( n − 1 , j − 1 ) ) − ( s ( n − 1 , j − 1 ) − s ( n − 1 , j − n − 1 ) ) \begin{aligned} g(n,j)&=g(n,j-1) \\&+(s(n-1,j+n-1)-s(n-1,j-1)) \\&-(s(n-1,j-1)-s(n-1,j-n-1)) \end{aligned} g(n,j)=g(n,j1)+(s(n1,j+n1)s(n1,j1))(s(n1,j1)s(n1,jn1))

由于 j j j 可能是负数,所以还要再加一个偏移量 B B B
这样复杂度就优化到 O ( n 3 ) O(n^3) O(n3) ,最终答案 a n s n ans_n ansn 可以通过以下递推式得到:
a n s i = i ⋅ a n s i − 1 + ∑ j = 1 i ( i − j ) ( s ( i − 1 , i ( i + 1 ) 2 ) − s ( i − 1 , j ) ) ans_i=i \cdot ans_{i-1}+\sum_{j=1}^i{(i-j)(s(i-1,\frac{i(i+1)}{2})-s(i-1,j))} ansi=iansi1+j=1i(ij)(s(i1,2i(i+1))s(i1,j))

参考代码

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;

const int MAXN=550;
const int B=MAXN*MAXN/2;
ll g[2][B<<1],s[2][B<<1],ans[MAXN];

int main()
{
	ll n,mod;
	int i,j,now,bef,mx;
	scanf("%lld%lld",&n,&mod);
	g[0][B]=s[0][B]=1;
	for(i=B;i<2*B;i++)
		s[0][i]=1;
	for(i=1;i<=n;i++)
	{
		now=i&1;
		bef=now^1;
		memset(g[now],0,sizeof(g[now]));
		memset(s[now],0,sizeof(s[now]));
		mx=i*(i-1)/2;
		g[now][-mx+B]=1;
		for(j=-mx+B+1;j<=mx+B;j++)
		{
			g[now][j]=g[now][j-1]+(s[bef][j+i-1]-s[bef][j-1])-(s[bef][j-1]-s[bef][j-i-1]);
			g[now][j]=(g[now][j]%mod+mod)%mod;
		}
		mx=(i+1)*(i+2)/2;
		for(j=-mx+B;j<=mx+B;j++)
			s[now][j]=(s[now][j-1]+g[now][j])%mod;
		for(j=1;j<i;j++)
			ans[i]=(ans[i]+(s[bef][(i+1)*i/2+B]-s[bef][j+B]+mod)%mod*(i-j))%mod;
		ans[i]=(ans[i]+i*ans[i-1])%mod;
	}
	printf("%lld\n",ans[n]);
}
  • 13
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值